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The main focus is the Reynolds number dependence of Kolmogorov normalized
low-order moments of longitudinal and transverse velocity increments. The velocity
increments are obtained in a large number of flows and over a wide range (40–4250)
of the Taylor microscale Reynolds number Rλ. The Rλ dependence is examined for
values of the separation, r, in the dissipative range, inertial range and in excess of
the integral length scale. In each range, the Kolmogorov-normalized moments of
longitudinal and transverse velocity increments increase with Rλ. The scaling expo-
nents of both longitudinal and transverse velocity increments increase with Rλ, the
increase being more significant for the latter than the former. As Rλ increases, the
inequality between scaling exponents of longitudinal and transverse velocity incre-
ments diminishes, reflecting a reduced influence from the large-scale anisotropy or the
mean shear on inertial range scales. At sufficiently large Rλ, inertial range exponents
for the second-order moment of the pressure increment follow more closely those
for the fourth-order moments of transverse velocity increments than the fourth-order
moments of longitudinal velocity increments. Comparison with DNS data indicates
that the magnitude and Rλ dependence of the mean square pressure gradient, based
on the joint-Gaussian approximation, is incorrect. The validity of this approximation
improves as r increases; when r exceeds the integral length scale, the Rλ dependence
of the second-order pressure structure functions is in reasonable agreement with the
result originally given by Batchelor (1951).

1. Introduction
The first two similarity hypotheses of Kolmogorov (1941, hereinafter referred to as

K41) provided a simple description of the small-scale structure of turbulence within
the framework of local isotropy and very large Reynolds numbers. According to the
first hypothesis, moments of the longitudinal velocity increment δu ≡ u(x+ r)− u(x)
depend only on 〈ε〉, the mean energy dissipation rate (the angular brackets denote
time averaging) and the kinematic viscosity ν of the fluid, when the separation r
is sufficiently small, i.e. within the viscous-dissipative range (DR). When r is in the
inertial range (IR), the effect of ν can be neglected and 〈(δu)n〉 ∼ rn/3. A third
hypothesis – the refined similarity hypothesis – (RSH) was introduced by Kolmogorov
(1962) to account for the spatial intermittency of the dissipative field.

One consequence of RSH is that the IR power-law exponents of r need no
longer be given by n/3; in general, 〈(δu)n〉 ∼ rζu(n), where ζu(n) 6= n/3. Significant
attention has been given through models, experiments and numerical simulations
(Kolmogorov 1962; She & Leveque 1994; Anselmet et al. 1984; Arneodo et al. 1996;
Cao, Chen & She 1996) to the dependence of ζu(n) on either n or Rλ. The similarity
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hypotheses do not distinguish between moments of longitudinal velocity increments
or transverse velocity increments. Recently, experiments (Herweijer & Van de Water
1995; Kahalerras, Malecot & Gagne 1996; Noullez et al. 1997) and simulations
(Chen et al. 1997) have shown that the scaling exponents associated with transverse
increments may be slightly smaller than longitudinal increments. Other experiments
have show them to be significantly smaller (Antonia & Pearson 1997) especially for
shear flows at low to moderate Rλ. Some of these differences can be explained by
the lack of a common measurement of the transverse increment and or a common
definition of its relative scaling exponent.

There is evidence (Arneodo et al. 1996) to suggest that ζu(n) does not change
appreciably with Rλ in shear-free flows. There is also partial evidence (Camussi &
Benzi 1997; Chen et al. 1997; Dhruva, Tsuji & Sreenivasan 1997; Zhou & Antonia
2000) to indicate that the magnitudes of ζv(n) or ζw(n), where v and w are transverse
velocity fluctuations, may increase with Rλ, leaving open the possibility that at
asymptotically large Rλ, ζu(n), ζv(n) and ζw(n) will all be equal. Another consequence
of RSH is that moments of velocity derivatives, normalized by Kolmogorov variables,
can now depend on Rλ instead of remaining constant (K41). In particular, the
overwhelming majority of the available data indicate that the magnitude of the
flatness factor F∂u/∂x ≡ 〈(∂u/∂x)4〉/〈(∂u/∂x)2〉2 of ∂u/∂x increases monotonically with
Rλ (see the compilations of Van Atta & Antonia 1980 and Sreenivasan & Antonia
1997). An exception to this trend is the measurements of Tabeling et al. (1996) in a flow
of helium gas at 5◦K contained between two counter-rotating disks. The magnitude
of F∂u/∂x increases with Rλ up to Rλ ' 700 before decreasing for Rλ > 700. Tabeling et
al. speculate that the ‘transitional’ behaviour around Rλ ' 700 may be associated with
the instability and breakdown of intense vortex filaments (Jimenez et al. 1993). While
Sreenivasan & Antonia (1997) noted that there were several unresolved problems
with respect to Tabeling et al.’s experiment, an interesting feature of that experiment
was the ability to cover a significant range of Rλ in the same flow. For one of the
flows (plane jet) that we consider, Rλ was varied from about 500 to about 1400, thus
straddling the transitional Reynolds number of the Tabeling et al. experiment. The
possibility of the ‘transitional’ behaviour being flow dependent cannot of course be
ruled out. There is less information available for the dependence of F∂v/∂x on Rλ;
the limited data (Antonia, Zhou & Shafi 1996) to date suggest that for Rλ 6 200,
F∂v/∂x increases with Rλ at a rate comparable to that for F∂u/∂x. The wake data of
Antonia et al. (1996) indicate that the magnitude of F∂v/∂x is larger than that of F∂u/∂x
but comparable to that of either F∂u/∂y or Fωz , where ωz is the spanwise vorticity
fluctuation; the significant difference between F∂u/∂y and F∂u/∂x is also evident in
numerical simulations (Jimenez et al. 1993). Perhaps consistently with the previous
observations, several authors (Kahalerras et al. 1996; Chen et al. 1997) suggested that
δv should be associated with enstrophy whereas δu is more probably linked to ε. This
suggestion was made primarily to explain the difference between ζu(n) and ζv(n), the
scaling exponents for 〈(δu)n〉 and 〈(δv)n〉, in the IR.

The present paper focuses mainly on the Rλ dependence of the low-order moments
of δu∗ and δv∗, the asterisk denoting normalization by Kolmogorov length [η ≡
(ν3/〈ε〉)1/4] or velocity (uK ≡ ν/η) scales. In particular, the emphasis is on the Rλ
behaviour of these structure functions for three different ranges of the separation r,
namely

(i) the dissipative range DR with r∗ typically less than 20,
(ii) the inertial range IR (1� r∗ � L∗),

(iii) and when r∗ exceeds the integral lengthscale L∗.
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We are not aware of any other investigation where the Reynolds-number depen-
dence in all three ranges has been considered for data that cover a wide Rλ range
(about 40–4250) and are treated in a consistent manner (see § 2). The interest in
(i) is partly to investigate whether Kolmogorov-normalized moments of δu and δv
exhibit a Reynolds-number dependence. We also consider the Rλ dependencies of the

skewness S∂u/∂x ≡ 〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2 and F∂u/∂x and whether 〈(∂v∗/∂x∗)4〉 or

〈(∂u∗/∂x∗)2
(∂v∗/∂x∗)2〉 varies with Rλ in a different manner from 〈(∂u∗/∂x∗)4〉. The in-

terest in 〈(∂u∗/∂x∗)2
(∂v∗/∂x∗)2〉 stems from its inclusion in the formulation of 〈(δp∗)2〉

(the second-order pressure structure function) by Hill & Wilczak (1995). With respect
to (ii), the emphasis is primarily on the difference in the magnitudes of exponents
associated with δu and δv and whether this difference disappears as Rλ increases. The
behaviour of range (iii) is important in terms of establishing the Rλ dependence of
moments of either velocity or pressure in the context of likely departures from global
isotropy and Gaussianity of the velocity field.

We also consider the Rλ dependence of 〈(δp∗)2〉 (p is the kinematic pressure
fluctuation), a quantity closely linked to fourth-order velocity increment moments.
The earliest investigations into the behaviour of 〈(δp∗)2〉 or, equivalently, the two-
point pressure correlation were based on the assumption of the joint-Gaussianity
approximation (JGA), applied either in the form used by Millionshchikov (1941) or in
terms of the independence of Fourier components of velocity (Heisenberg 1948). JGA
has been used here to calculate 〈(δp∗)2〉 from the measured distributions of 〈(δu∗)2〉.
The Rλ dependence of 〈(δp∗)2〉 is then examined for the three ranges mentioned above.
In particular, we estimate the Rλ dependencies of 〈p∗2〉, scaling range exponents of
〈(δp∗)2〉 and the mean-square pressure gradient 〈(∂p∗/∂x∗)2〉. Since JGA is unlikely
to be accurate at small values of r∗ (Kim & Antonia 1993; Hill 1994), the accuracy
of 〈(∂p∗/∂x∗)2〉 has been assessed by comparison with results obtained from direct
numerical simulations and with the use of a relation (Hill & Wilczak 1995) which
avoids JGA.

Experimental details, including the procedure used for treating the data, are given
in § 2. Low-order moments of δu and δv are considered in § 3 whereas third-order
moments are discussed in § 4. The data for second-order moments of δp are treated in
§ 5. Although § 3, § 4 and § 5 address the Rλ dependence of separations ranging from
dissipative to integral scales, we deal with the Rλ dependence of IR exponents, corre-
sponding to moments of both velocity and pressure increments, in § 6. A discussion
of the possible effect of anisotropy on these exponents is included in § 6.

2. Experimental conditions
2.1. Introduction and flow conditions

A significant amount of two velocity component data from a number of different

flows over a wide range of Rλ [≡ u′λ/ν, λ = u′/〈(∂u/∂x)2〉1/2, 40 . Rλ . 4250) (the
maximum Rλ available for only u component data was about 5630) was analysed
for this paper. Strictly, a definition of Rλ based on u′ and λ is ambiguous in non-
isotropic turbulence (e.g. Corrsin 1963; Fulachier & Antonia 1983). However, while
the use of the fluctuating vector ui should result in a more general definition of the
turbulence Reynolds number, the velocity fluctuations u, v and w were measured in
only a few flows; for convenience, the present and generally used definition of Rλ has
been retained. The majority of data were acquired for the current study. Some of
the other data were obtained in our laboratory and were used in previously reported
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investigations; they were re-analysed for the present paper. The remaining data were
acquired and published by other researchers. The following flows were used:

(a) Grid turbulence Rλ ∼ 68 (Antonia, Zhou & Zhu 1998b) cf. table 1.
(b) Cylinder wakes Rλ ∼ 38, 39 (Antonia & Pearson 1998) and Rλ ∼ 210 (Antonia

& Pearson 1997) cf. table 1.
(c) Rough wall boundary layer Rλ ∼ 330 (Antonia & Smalley 2000) cf. table 1.
(d) Circular jet Rλ ∼ 500 (current study) cf. table 1.
(e) Pipe (current study) – single-wire (67 . Rλ . 337) cf. table 2; X-wire data

(68 . Rλ . 335) cf. table 3.
(f ) Plane jets – single-wire (500 . Rλ . 1400, current study; Pearson & Antonia

1997) cf. tables 4(a) and 4(b); X-wire data Rλ ∼ 535 (Antonia et al. 1997a), 666 .
Rλ . 1170 (current study) cf. table 5.

(g) atmospheric surface layers Rλ ∼ 5630 (Zhu, Antonia & Hosokawa 1995),
Rλ ∼ 4250 (current study) Rλ ∼ 10 340–14 860 (Dhruva et al. 1997; their table II) and
Rλ ∼ 19 500 (Sreenivasan & Dhruva 1998; their figures 3, 4 and 5) cf. table 1.

In each flow, a crossed hot-wire probe was used to measure u and v (or w) velocity
fluctuations. Pertinent experimental conditions are summarized in tables 1–5. Investi-
gations of flows (a) to (f) were carried out in our laboratory; the experimental facilities
for (a), (b), (c) and parts of (f) and (g) have been described elsewhere. The data for
the circular and plane jets are new, as are the pipe flow data; a brief description of
these facilities will be given below. The atmospheric surface layer data, designated
‘current study’ in (g), were acquired by a group, which included the second author,
at the 1976 International Turbulence Comparison Experiment (ITCE) – although the
experiments by this group were not part of the main ITCE program (Dyer et al.
1982). These data had not been previously analysed in terms of small-scale statistics.
A brief description of the experimental set-up will also be given below.

For the circular jet (d), two component measurements are made on the centreline
with a X-wire probe. The Reynolds number (Re = Ujd/ν, where Uj is the jet exit
velocity and D is the 55 mm diameter of the jet nozzle) is 170 000. Measurements
are made at x/D ' 60 where the flow field should be self-preserving (Antonia,
Satyaprakash & Hussain 1980). Only one value of Rλ (∼ 500) has been measured.
Each wire, of diameter 2.54 µm (Pt-10% Rh), is etched to a length of 0.5 mm (l∗ = 3.3);
the Kolmogorov normalized transverse separation between wires is 2.2. The X-probe
is calibrated for velocity and yaw at the jet exit plane. Further details can be found
in table 1; acquisition and calibration details are further discussed below.

The pipe used for (e) is high-grade drawn aluminium of internal diameter D ≡
127 mm. The complete length is 18.96 m (149 diameters). Air is drawn into the
pipe, via a fibreglass moulded bellmouth, and immediate transition-to-turbulence is
ensured with a high-grit sandpaper roughness strip (1 diameter width). Single and
two-component velocity measurements are made. The probe (either the single- or X-
wire) is located a distance of 100D downstream of the trip. Pressure taps are located
along the complete pipe length and the measured mean static pressure gradient, for
each value of U1 (centreline velocity), is constant beyond the initial development
length region. The linearity of the pressure and the measured high-order moments
of u and v on the pipe centreline indicated that the assumption of fully developed
flow is satisfactory at the measurement station. The yaw calibration is carried out
in situ with special care to ensure the probe is maintained at the centreline for
each angle. A Pitot-static tube, for calibration purposes, is located a further sixteen
diameters downstream. The single wire is 1.27 µm Pt-10% Rh with an etched length
of 0.25 mm. The Kolmogorov-normalized wire length was in the range 0.8 6 l∗ 6 3.6
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〈U〉 u′ v′ 〈ε〉a 〈ε〉b ±95%Flow η Uk fs fk Lu Lv Ts
type y

δ
Rλ ( m

s
) ( m

s
) ( m

s
) ( m2

s3 ) ( m2

s3 ) ( m2

s3 ) (mm) ( m
s
) (Hz) (Hz) fc/fκ (m) (m) N (s)

Grid — 68 11.3 0.22 0.18 0.53 0.45 0.05 0.292 0.052 12 600 6157 1.02 0.046 0.010 74 377 610
C-W1a 0.0 38 3.25 0.09 0.08 0.044 0.039 0.00 0.543 0.028 1667 954 0.84 0.046 0.010 31 807 895
C-W1b 0.0 39 3.27 0.09 0.07 0.046 0.042 0.00 0.535 0.029 1667 972 0.82 0.046 0.007 31 807 895
C-W2a 0.0 195 12.6 0.82 — 12.5 11.0 1.02 0.133 0.116 25 000 15 107 0.83 0.130 — 3176 66
C-W2b 0.0 201 12.4 0.82 0.77 12.0 9.6 0.69 0.136 0.113 27 027 14 541 0.93 0.098 0.013 5191 82
C-W2c 0.0 205 12.4 0.82 0.78 12.0 9.6 1.00 0.136 0.113 27027 14 517 0.93 0.101 0.026 5043 82
RWBL 0.5 330 14.3 2.13 1.60 207.0 153.0 37.1 0.068 0.230 50 000 33 622 0.74 0.034 0.009 71 136 336
C-J — 485 4.31 1.12 0.94 6.90 6.46 0.97 0.149 0.100 8000 4616 0.87 0.166 0.071 13 609 1049
ASLa 5m 5630 3.25 0.79 — 0.0123 — 0.0006 0.778 0.019 1333 715 0.88 — — — 692
ASLb 2m 4250 6.2 0.94 0.43 0.041 0.006 0.535 0.028 10 000 1844 0.68 84.1 9.72 62 1678
ABLa
ABLb

Grid, Antonia et al. (1998b).
C-W1a, cylinder wake u− v; C-W1b, cylinder wake u− w; current study.
C-W2a, cylinder wake u; C-W2b, cylinder wake u− v; C-W2c, cylinder wake u− w; Antonia et al. (1996).
RWBL, rough wall boundary layer; Antonia & Smalley (2000).
C-J, circular jet; current study.
ASLa, atmospheric surface layer; Zhu et al. (1995).
ASLb, atmospheric surface layer; current study.
ABLa, atmospheric boundary layer; Dhruva et al. (1997); see their table I for details (35 m above ground level; Rλ ≈ 10 000− 15 000).
ABLb, atmospheric boundary layer; Sreenivasan & Dhruva (1998); see their table I Run 3 for details (Rλ ≈ 19 500).
δ, is the boundary layer thickness or wake/jet half-width; y, is the distance from the wall or from the wake/jet centreline.
a 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the structure function method using 〈(∂u/∂x)2〉 ≡ lim

r→0
〈(δu)2/r2〉.

b 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the spectral method using 〈(∂u/∂x)2〉 ≡ ∫ ∞
0
k2

1φu(k1)dk1.

Lu, longitudinal integral lengthscale ≡ 〈U〉 ∫ τ0
0
ρuu(τ)dτ, ρuu(τ) is the longitudinal autocorrelation function and τ0 is the time at the first zero crossing.

Lv , transverse integral lengthscale ≡ 〈U〉 ∫ τ0
0
ρvv(τ)dτ, ρvv(τ) is the transverse autocorrelation function.

N, number of independent samples ≡ 〈U〉Ts/2Lu.
Ts, total record time.

Table 1. Miscellaneous single and X-wire measurement details.
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s
) ( m

s
) ( m2

s3 ) ( m2

s3 ) ( m2

s3 ) (mm) ( m
s
) (Hz) (Hz) fc/fk (m) N (s) S ∗

1.0 65 5.35 0.19 0.277 0.323 0.05 0.333 0.046 5000 2560 0.98 0.033 68 439 839 0.00
1.0 75 5.47 0.20 0.264 0.321 0.04 0.341 0.046 5000 2553 0.98 0.033 17 312 210 0.00
1.0 85 7.58 0.27 0.668 0.668 0.05 0.277 0.057 8000 4352 0.92 0.065 30 514 524 0.00
1.0 98 8.80 0.32 1.035 1.035 0.10 0.248 0.064 10 000 5637 0.89 0.052 35 638 419 0.00
1.0 99 9.05 0.33 1.074 1.274 0.17 0.237 0.065 12 659 6085 1.04 0.048 30 776 331 0.00
0.7 100 5.21 0.25 0.367 0.445 0.06 0.309 0.050 5000 2688 0.93 0.054 40 804 839 0.09
1.0 117 12.29 0.44 2.62 2.62 0.30 0.197 0.080 20 000 9925 1.01 0.056 46 013 419 0.00
0.5 127 4.91 0.32 0.585 0.717 0.09 0.274 0.056 5000 2851 0.88 0.065 31 486 839 0.12
1.0 129 15.26 0.54 4.36 5.72 1.14 0.164 0.094 25 000 14 773 0.85 0.047 54 354 336 0.00
1.0 151 17.27 0.62 6.13 6.13 1.00 0.159 0.099 33 333 17 247 0.93 0.057 38 230 252 0.00
0.7 147 8.63 0.44 1.47 1.77 0.21 0.218 0.071 12 659 6292 1.00 0.082 17 475 331 0.08
0.8 160 15.17 0.61 4.63 5.67 0.89 0.164 0.094 25 000 14 764 0.85 0.058 44 272 336 0.04
1.0 174 21.02 0.74 9.93 9.93 1.50 0.143 0.110 33 333 23 360 0.68 0.057 46 223 252 0.00
1.0 169 23.31 0.86 17.7 19.5 2.66 0.119 0.130 66 667 31 297 1.01 0.044 33 404 126 0.00
0.5 177 8.05 0.54 2.40 2.85 0.33 0.194 0.080 12 659 6625 0.95 0.097 13 797 331 0.10
0.7 186 14.85 0.70 6.38 7.17 1.13 0.153 0.101 25 000 15 481 0.81 0.069 36 383 336 0.06
0.8 197 23.21 0.93 18.4 19.6 2.46 0.118 0.131 66 667 31 303 1.01 0.048 30 367 126 0.03
0.5 230 14.09 0.86 9.02 11.2 1.74 0.138 0.112 25 000 16 231 0.77 0.074 31 768 336 0.08
0.7 245 25.96 1.20 28.2 35.3 5.60 0.113 0.142 50 000 36 451 0.69 0.048 90 363 336 0.05
0.6 278 25.37 1.34 35.0 42.8 3.45 0.107 0.150 50 000 37 826 0.66 0.054 78 789 336 0.07
0.5 311 24.93 1.49 42.3 53.3 8.77 0.096 0.166 50 000 41 171 0.61 0.058 72 519 336 0.07
0.4 333 24.31 1.63 52.1 66.7 11.6 0.092 0.176 50 000 42 386 0.59 0.058 70 437 336 0.07

a 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the spectral method using 〈(∂u/∂x)2〉 ≡ ∫ ∞
0
k2

1φu(k1) dk1.
b 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the structure function method using 〈(∂u/∂x)2〉 ≡ lim

r→0
〈(δu)2/r2〉.

S∗ non-dimensional mean-shear ≡ (ν/〈ε〉)1/2∂〈U〉/∂y.

Table 2. Pipe single wire measurement details (current study).
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〈U〉 〈ε〉a 〈ε〉b ±95%u′ v′ η Uk fs fk Lu Lv Ts
y/R Rλ ( m

s
) ( m

s
) ( m

s
) ( m2

s3 ) ( m2

s3 ) ( m2

s3 ) (mm) ( m
s
) (Hz) (Hz) fc/fk (m) (m) N (s) S ∗

1.0 62 6.51 0.201 0.170 0.372 0.458 0.07 0.308 0.050 6349 3366 0.94 0.038 0.008 56 737 661 0.00
1.0 64 5.40 0.195 0.170 0.298 0.379 0.05 0.324 0.048 5000 2655 0.94 0.035 0.008 64 564 839 0.00
0.8 71 5.37 0.208 0.173 0.324 0.396 0.03 0.319 0.049 5000 2677 0.93 0.053 0.008 42 833 839 0.06
0.8 78 6.54 0.231 0.192 0.462 0.444 0.02 0.301 0.051 6349 3456 0.91 0.048 0.008 45 008 660 0.06
1.0 85 8.77 0.335 0.282 1.495 1.872 0.20 0.218 0.072 10 000 6410 0.78 0.051 0.008 71 874 839 0.00
0.7 91 6.50 0.278 0.218 0.632 0.753 0.08 0.271 0.057 6349 3820 0.82 0.056 0.008 38 284 661 0.09
1.0 104 8.90 0.355 0.296 1.356 1.510 0.13 0.225 0.069 10 000 6303 0.79 0.047 0.008 39 949 419 0.00
1.0 111 11.32 0.427 0.332 2.521 2.782 0.16 0.193 0.080 16 000 9351 0.86 0.053 0.008 56 212 524 0.00
1.0 135 15.35 0.578 0.443 5.625 6.402 0.68 0.157 0.098 25 000 15 552 0.80 0.060 0.008 43 135 336 0.00
1.0 136 20.15 0.715 0.568 12.62 14.86 1.27 0.128 0.121 50 000 25 098 1.00 0.051 0.008 33 020 168 0.00
1.0 144 25.67 0.943 0.752 35.36 38.77 5.50 0.100 0.155 50 000 40 942 0.61 0.042 0.008 50 777 168 0.00
1.0 163 26.36 0.924 0.742 24.2 27.9 6.22 0.111 0.142 33 333 37 845 0.42 0.044 0.008 74 707 252 0.00
0.7 259 26.03 1.256 0.866 30.01 40.04 9.42 0.103 0.153 33 333 40 285 0.40 0.071 0.009 46 275 252 0.06
0.5 304 24.44 1.490 0.934 43.81 59.06 4.15 0.093 0.169 33 333 41 696 0.38 0.083 0.008 37 092 252 0.08
0.3 326 23.73 1.760 1.053 70.95 100.2 27.08 0.082 0.192 33 333 46 022 0.35 0.083 0.011 35 990 252 0.08

a 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the spectral method using 〈(∂u/∂x)2〉 ≡ ∫ ∞
0
k2

1φu(k1) dk1.
b 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the structure function method using 〈(∂u/∂x)2〉 ≡ lim

r→0
〈(δu)2/r2〉.

Table 3. Pipe X-wire measurement details (current study).
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s
) ( m

s
) ( m2

s3 ) ( m2

s3 ) ( m2

s3 ) (mm) ( m
s
) (Hz) (Hz) fc/fk (m) N (s)

498 2.56 0.77 1.31 1.60 0.17 0.218 0.068 3205 1876 0.86 0.290 11 824 2682
569 2.91 0.83 1.29 1.70 0.23 0.214 0.068 5000 2165 1.15 0.376 406 105
580 4.53 1.06 3.46 4.18 0.53 0.170 0.087 6329 4252 0.74 0.275 14 550 1766
696 4.90 1.23 4.25 5.09 0.40 0.165 0.092 12 658 4740 1.33 0.272 991 110
770 5.76 1.43 6.43 8.07 0.90 0.143 0.101 10 000 6390 0.78 0.308 10 444 1117
771 8.92 2.16 32.8 39.8 3.87 0.099 0.153 25 000 14 413 0.87 0.213 2334 111
763 2.08 0.54 0.126 0.158 0.02 0.396 0.038 1613 836 0.96 0.452 14 616 6346
811 4.01 1.23 3.147 3.93 0.46 0.173 0.085 8000 3692 1.08 0.389 1563 303
831 4.00 1.11 2.07 2.40 0.18 0.194 0.076 7042 3278 0.96 0.381 1586 302
851 8.02 1.99 20.42 24.15 3.01 0.108 0.134 16 129 11 788 0.68 0.282 9933 698
867 3.77 0.95 0.987 1.146 0.10 0.239 0.063 4762 2513 0.92 0.430 4820 1101
923 5.83 1.81 11.57 14.03 1.46 0.125 0.117 16 129 7417 1.08 0.423 896 130
940 4.59 1.46 4.732 5.74 0.56 0.157 0.094 10 000 4654 1.07 0.394 1754 301
970 9.04 2.12 19.03 23.45 3.11 0.113 0.134 16 129 12 744 0.63 0.267 2923 173
998 3.81 1.02 0.909 1.226 0.21 0.239 0.063 5000 2540 0.98 0.421 1244 1049

1036 5.14 1.66 6.59 7.76 0.62 0.145 0.101 12 658 5641 1.12 0.420 1836 300
1075 5.76 1.86 9.23 11.4 1.04 0.132 0.111 16 129 6921 1.16 0.431 2007 301
1091 7.62 2.34 23.5 27.8 2.74 0.105 0.139 25 000 11 538 1.08 0.403 992 105
1109 13.81 3.28 83.45 102.4 8.79 0.078 0.193 50 000 28 203 0.89 0.247 778 28
1121 5.81 1.98 11.24 13.55 1.17 0.126 0.116 20 000 7317 1.37 0.412 2126 301
1105 11.73 2.97 61.57 70.67 9.81 0.083 0.176 33 333 22 608 0.71 0.255 5788 252
1133 12.93 3.11 71.38 78.7 11.4 0.080 0.182 33 333 25 751 0.62 0.249 8702 335
1180 8.96 2.69 36.07 41.53 3.13 0.095 0.154 33 333 15 042 1.06 0.398 1173 104
1145 14.38 4.08 208.7 201.1 16.7 0.065 0.238 33 333 34 973 0.46 0.295 16 351 671
1257 10.62 3.16 59.2 69.9 6.03 0.083 0.176 50 000 20 244 1.23 0.381 1452 104
1274 11.00 3.47 83.4 99.8 9.78 0.076 0.191 50 000 22 886 1.09 0.379 1512 104
1336 14.54 4.21 170.9 169.5 17.6 0.068 0.226 33 333 33 933 0.47 0.287 33 933 1174
1371 13.60 3.99 139.4 123.7 6.10 0.073 0.212 25 000 29 817 0.42 0.291 10 442 447
a 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the spectral method using 〈(∂u/∂x)2〉 ≡ ∫ ∞

0
k2

1φu(k1) dk1.
b 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the structure function method using 〈(∂u/∂x)2〉 ≡ lim

r→0
〈(δu)2/r2〉.

These data are attenuated; for the better part 16-bit resolution should have been used.

Table 4. Plane jet single wire measurement details (current study).
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〈U〉 〈ε〉a 〈ε〉b ±95%u′ v′ η Uk fs fk Lu Lv Ts
Rλ ( m

s
) ( m

s
) ( m

s
) ( m2

s3 ) ( m2

s3 ) ( m2

s3 ) (mm) ( m
s
) (Hz) (Hz) fc/fk (m) (m) N (s)

506 8.72 2.07 1.88 73.5 71.2 9.19 0.082 0.181 25 000 16 825 0.74 0.093 0.062 2306 49
662 5.81 1.27 1.13 5.31 6.25 0.75 0.160 0.097 8000 5780 0.69 0.226 0.116 13 463 1049
731 4.96 1.25 1.05 4.15 4.82 0.69 0.167 0.091 6329 4719 0.67 0.303 0.118 14 427 1775
764 5.64 1.34 1.16 4.85 5.78 0.74 0.163 0.095 6300 5498 0.57 0.255 0.129 7320 666
789 8.40 1.83 1.60 16.2 18.4 1.54 0.122 0.128 16 129 11 006 0.73 0.226 0.112 9660 524

1107 14.86 3.22 2.84 83.1 85.0 9.60 0.082 0.191 33 333 28 732 0.56 0.240 0.126 7790 252
1077 16.69 3.71 3.34 176.63 136.2 40.0 0.071 0.223 33 333 37 626 0.43 0.216 0.119 9729 252
a 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the spectral method using 〈(∂u/∂x)2〉 ≡ ∫ ∞

0
k2

1φu(k1) dk1.
b 〈ε〉 ≈ 15ν〈(∂u/∂x)2〉; 〈(∂u/∂x)2〉 is calculated from the structure function method using 〈(∂u/∂x)2〉 ≡ lim

r→0
〈(δu)2/r2〉.

These data are attenuated; for the better part 16-bit resolution should have been used.

Table 5. Plane jet X-wire measurement details (current study).
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for 67 . Rλ . 337. The X-wires are 2.5 µm Pt-10% Rh, with an etched length (l∗)
range of 1.2–4.6 and wire separation of approximately 1.8η–4.5η depending on Rλ
(62 . Rλ . 335). The Reynolds number (U1D/ν; U1 is the mean velocity on the pipe
axis) range investigated is 50 000–220 000 and the majority of measurements are made
on the axis; those that are not have non-zero mean-shear, S∗, [≡ (ν/〈ε〉)1/2∂〈U〉/∂y]
and are indicated in tables 2 and 3.

Two different blower-type wind tunnels and nozzle geometries are used for generat-
ing the plane jet flows (f). Both tunnels are supplied by variable frequency controlled
centrifugal-type blowers. The more extensive single- and X-wire measurements are
made downstream of a horizontal two-dimensional nozzle (two-dimensional contrac-
tion ratio of 10, width h = 165 mm) located at a height of 1.2 m above the floor. A
few X-wire measurements were made in a jet exiting from a vertical two-dimensional
contraction (ratio = 14) with h = 42 mm with the lower edge only 100 mm above the
floor. For h = 165 mm, u and v is measured at x = 50h from the nozzle exit plane.
At this location, the flow is expected to be approximately self-preserving. The jet exit
velocity, Uj , could be varied in the range 5 m s−1 to 40 m s−1. Rλ, at the measurement
station, was in the range 500–1400. The single wire (1.27 µm diameter Pt-10% Rh
Wollaston, etched length l = 0.25 mm, 0.9 6 l∗ 6 3.8) measurements were made first;
a few results were presented and discussed in Pearson & Antonia (1997). The X-wire
measurements (2.54 µm, l ' 0.38 mm, 2.3 6 l∗ 6 5.2 – we had difficulty maintaining
a 1.27 µm X-wire probe in this flow) are made over a smaller and less extensive Rλ
range (666–1175) than the single wire experiment. A previous simultaneous u and v
measurement (Antonia et al. 1997a) is included here. The measurements were made
on the centreline at 53h from the exit plane of the 42 mm nozzle with an X-probe
(2.5 µm diameter wire of 0.5 mm length). Uj was 25 m s−1 and Rλ was 600 (adjusted
in this paper to 535) at the measurement station.

Velocity and temperature fluctuations were measured during ITCE 1976. The
experiment was conducted on a flat open grazing terrain 15 km NNW of Conargo,
near Deniliquin, NSW, Australia. The site was moderately covered by salt bush and
native grasses of about 0.5 m in height and there were patches of eucalypt trees,
5–15 m in height, about 5 km SW of the site, in the prevailing wind direction. All
velocity, temperature and some cup anemometer signals were recorded on a 4-channel
3960 Hewlett–Packard FM tape recorder. A small selection of X-wire measurements,
e.g. horizontal and vertical velocity components, u and v, have been digitized for
the current study. The X-wire probe was located at 1.7 m height and consists of
two 5 µm diameter Wollaston wires (Pt-10% Rh) of approximately 1 mm etched
length in a 90◦ ‘X’ configuration. Pertinent flow conditions include 〈U〉 ∼ 6.2 m s−1,

〈u2〉1/2 ∼ 0.94 m s−1, Rλ ∼ 4250 and η ∼ 0.54 mm for z/L ∼ −0.03 (z is the height and
L is the Monin–Obukhov lengthscale). For this experiment, the wires were operated
by DISA 55M01 constant temperature bridges and signals were conditioned before
tape recording. Average bridge output voltages were noted approximately every 2 min
and up to 40 min records were obtained. The calibrations, using King’s law, of each
X-wire were rechecked in the laboratory after returning to Newcastle.

2.2. Data acquisition and reduction methods

For all the velocity calibrations, whether single or X-wire probe, velocity versus d.c.
voltage curves were obtained both before and after data acquisition. Third- or fourth-
order velocity-voltage polynomials were sufficient to describe the wire behaviour. All
X-wire measurements were reduced to u and v components using the effective angle
method of Browne, Antonia & Chua (1989).
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Data were acquired with in-house constant temperature anemometers at an overheat
ratio of 1.5. Signal conditioning was achieved with an in-house amplifier/low-pass
filter (24 dB/octave) combination. The signal was buck-and-gained to fill at least 70%
of the available 10 V range. In most cases, the low-pass cut-off frequency – we avoid
aliasing for all of our experimental data sets in this paper by sampling, at least, at
twice the low-pass filter frequency – was set to a frequency that was slightly lower than
that indicative of the onset of f2 anemometer noise using a trial-and-error method,
i.e. a small sample was acquired and the digital spectrum was calculated on the data
acquisition PC. The choice of this ad hoc method was justified, especially for the high
Rλ flows which have a power spectrum greater than 72 dB (i.e. 12-bit resolution). The
resulting voltage signal was digitized with 12-bit resolution. In nearly all cases, the
total record length time was limited to 15 min.

For all of our laboratory data, the velocity increments, derivatives and spectra
are measured in the time domain. We make use of Taylor’s hypothesis to convert
from the time to the spatial domain. Most of the data, e.g. (c)–(g), have high values
of u′/〈U〉, and should be corrected in the high-wavenumber/small-scale range. We
have not applied any corrections – except for the technique discussed in the next
subsection – since the majority of this paper deals with scales outside the DR. In
tables 1–5 we estimated the number of independent samples, N ≡ Ts/2Tu (Tennekes
& Lumley 1972) and consider it to be indicative of the worst-case scenario. Here, Ts
is the total record length time and Tu is the integral time scale (≡ ∫ τ0

0
ρuu(τ) dτ; where

ρuu(τ) is the longitudinal velocity autocorrelation function and τ0 is the time at which
the first zero crossing occurs).

2.3. The estimation of 〈ε〉
In this paper, the mean turbulent energy dissipation rate or just 〈ε〉iso is calculated by
two methods which should be consistent, depending on the degree of homogeneity
of the flow. The first method uses the longitudinal one-dimensional spectrum, φu(k1),
namely 〈ε〉 = 15ν

∫ ∞
0
k2

1φu(k1) dk1. The compensated spectrum is corrected at high
wavenumber by removing the portion of the measured spectrum that deviates from
the first-order exponential assumption φu(k1) ∼ k

−5/3
1 exp(mk1 + b) where m and b

are constants. The corrected compensated spectrum is then extrapolated. Wherever
possible, a sub-record length of approximately 16Lu is used. The second method – its
level of correspondence to the first depends on the degree of homogeneity of the
flow – uses 〈(δu)2〉 to estimate 〈(∂u/∂x)2〉, namely 〈ε〉 ∼ limr→0 15ν〈(δu)2〉/r2. Here,
to remain consistent with the first method, the band of separations corresponding
to the high-wavenumber part of the spectrum that deviated from the exponential
extrapolation used in the first method is also ignored. A crude approximation is used
to convert the frequencies that correspond to the single and double arrows in figure 1
to the required nth time lag, i.e. τn ∼ fs/fn, fs is the sampling frequency and fn is the
frequency that corresponds to the single or double arrow (the actual conversion is,
most probably, more complicated, i.e. dependent on the degree of local homogeneity,
at least, and the validity of Taylor’s hypothesis). A cubic spline is fitted between
these two r scales. The resulting cubic splines are used as weighting functions to
extrapolate high-order polynomials to r = 0. The resulting value for 〈ε〉 and its final
uncertainty can be found in tables 1–5. The greater inequality when spectra are used,
again, may indicate a lack of local-homogeneity or failure of Taylor’s hypothesis at
high wavenumber/small scales. Higher-order derivatives, e.g. 〈(∂u/∂x)4〉, 〈(∂v/∂x)4〉
and 〈(∂u/∂x)2(∂v/∂x)2〉, are also corrected in this manner. Figure 1 shows an example
for the fourth-order moments for the same plane jet data as used in the above
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Figure 1. r−4 compensated fourth-order moments of δu and δv in terms of r. Each curve is
‘post’-normalized by the resulting 〈(δu)2〉r=0. O, 〈(δu)4〉; ∗, 〈(δv)4〉; �, 〈(δu)2(δv)2〉; -- -- --, spline fit
to δu or δv or δuδv; —, ‘averaged’ extrapolation to r = 0. ↑ and ↑↑ indicate the start and finish of
the extrapolation weighting region, as described in the text.
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Figure 2. A comparison between Kolmogorov-normalized second-order moments of δu (in terms
of r∗ for Rλ ∼ 40− 1175) and K41 asymptotes. The arrow points to the direction of increasing Rλ.
The increase in the IR slope is evident with Rλ. The data for figures 3–8 are X-wire measurements
only (tables 1, 3 and 5). —, 〈(δu∗)2〉; — - —, ( 1

15
)r∗2; - - -, ' 2.13r∗2/3.

discussion for 〈ε〉. The results have been normalized by 〈(∂u/∂x)4〉|r=0. We realize
that this technique is empirical; indeed, we have applied (Antonia, Pearson & Zhu
2000) higher-order versions of Batchelor’s parameterization method (e.g. Stolovitzky,
Sreenivasan & Juneja 1993) on a number of datasets and achieved little improvement
in the overall uncertainty for the above quantities at small r∗.

3. Low-order moments of velocity increments
In this section, we discuss low even-order moments of δu∗ and δv∗, mainly up to

order 6. The discussion on 〈(δu∗)3〉 will be given in § 4. Second-order moments of
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Figure 3. Kolmogorov-normalized second-order moments of δv in terms of r∗. Refer to figure 2.

—, 〈(δv∗)2〉; — - —, ( 2
15

)r∗2; - - -, ' (4/3× 2.1)r∗2/3.

the velocity increments δu∗ and δv∗ are plotted in figures 2 and 3 in terms of r∗.
As has been reported previously, though only in the context of 〈(δu∗)2〉 (Anselmet
et al. 1984; Arneodo et al. 1996), the distributions tend to collapse as r∗ → 0. This
collapse is biased in the case of 〈(δu∗)2〉 since isotropy was assumed to estimate
〈ε〉, namely 〈ε〉iso = 15ν〈(∂u/∂x)2〉, and r−2〈(δu)2〉 was one of two constraints, as
discussed in § 2. For values of r∗ in the DR, the distributions begin to fan out in
a systematic fashion as Rλ increases. The smaller Rλ, the smaller the r∗ location at
which peeling off occurs. The peel-off rate for 〈(δv∗)2〉 is slightly faster than 〈(δu∗)2〉
at any given r∗, e.g. for r∗ = 10 the spread in 〈(δv∗)2〉 is 1.4 and the spread in

〈(δu∗)2〉 is 1.2; for r∗ = 50 the spread in 〈(δv∗)2〉 is 2.1 and the spread in 〈(δu∗)2〉
is 2.0. At large r∗, typically greater than L∗, the distributions must attain constant
values since 〈(δu∗)2〉 → 2〈u∗〉2 and 〈(δv∗)2〉 → 2 〈v∗〉2 if the flows are decorrelated
and homogeneous. All the distributions in figures 2 and 3 seem to conform with this
behaviour. The overall behaviour of the distributions in figures 2 and 3 implies that
K41 may be approached asymptotically, i.e. similarity of Kolmogorov-normalized
distributions is likely to be attained only as Rλ → ∞, i.e. fully developed turbulence
for which Kolmogorov (1941) and Kolmogorov (1962) were intended.

Distributions of 〈(δu∗)4〉 and 〈(δv∗)4〉 are shown in figures 4 and 5, respectively.
The general features exhibited by these distributions are similar to those in figures
2 and 3. As expected, the dependence on Rλ appears to be more emphasized for the
higher-order moments for figures 4 and 5 than in figures 2 and 3. The increase when
r∗ → 0 is obvious and non-negligible for both 〈(δu∗)4〉 and 〈(δv∗)4〉. For r∗ ' 10, the
magnitude of 〈(δu∗)4〉 increases by a factor of 2.7 while 〈(δv∗)4〉 increases by about
a factor of 3.5 for the Rλ range considered. For r∗ ' 50, the magnitude of 〈(δu∗)4〉
increases by a factor of 4.1 while 〈(δv∗)4〉 increases by about a factor of 7.6. In fact,

up to r∗ ' 200, the rate of increase in 〈(δv∗)4〉 appears to be twice that of 〈(δu∗)4〉
(e.g. 11.1 and 26.3, respectively). In general, the higher rate of increase in 〈(δv∗)n〉 over
that of 〈(δu∗)n〉 is not surprising, considering that if in the asymptote both must be
equal, then 〈(δv∗)n〉 must increase at a higher rate to catch up to 〈(δu∗)n〉.

We first examine the Rλ dependence of 〈(δu∗)2n〉 and 〈(δv∗)2n〉, for n = 1, 2 and
3, in the asymptotic limit r∗ → ∞ (here, r∗ � L∗). It is relatively easy to show,
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Figure 4. Kolmogorov-normalized fourth-order moments of δu in terms of r∗. Refer to figure 2.
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Figure 5. Kolmogorov-normalized fourth-order moments of δv in terms of r∗. Refer to figure 3.

— - —, 0.3r∗4; - - -, 41.8r∗4/3.

assuming independence of variables and homogeneity, that the limiting values of the
second-order quantities are given, using local isotropy, by

〈(δu∗)2〉r∗→∞ = 2〈u∗2〉 =
2Rλ√

15
, (3.1)

〈(δv∗)2〉r∗→∞ = 2〈v∗2〉 =
2αuvRλ√

15
, (3.2)

where αuv = 〈v2〉/〈u2〉, the ratio of the velocity variances, is considered here to be an
indicator of the anisotropy at large scales. The limiting values of 〈(δu∗)4〉 and 〈(δv∗)4〉
may be written

〈(δu∗)4〉r∗→∞ = 2〈u∗4〉+ 6〈u∗2〉2 = 2[Fu + 3]〈u∗2〉2 = 2[Fu + 3]R2
λ/15, (3.3)
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〈(δv∗)4〉r∗→∞ = 2〈v∗4〉+ 6〈v∗2〉2 = 2[Fv + 3]〈v∗2〉2 = 2α2
uv[βFu + 3]R2

λ/15, (3.4)

where Fu and Fv are the flatness factors [≡ 〈a4〉/〈a2〉2, a = u or v] of u and v,
respectively, and β = Fv/Fu. We can easily extend our discussion to the 2nth-order
moment, but experimentally we will suffer errors due to non-closure of the δu and δv
p.d.f.s. For n = 3,

〈(δu∗)6〉r∗→∞ = 2〈u∗6〉+ 30〈u∗4〉〈u∗2〉 = 2[SFu + 15Fu]〈u∗2〉3
= 2[SFu + Fu]R

3
λ/153/2, (3.5)

〈(δv∗)6〉r∗→∞ = 2〈v∗6〉+ 30〈v∗4〉〈 v∗2〉 = 2[SFv + 15Fv]〈v∗2〉3
= 2α3

uv[δSFu + βFu]R
3
λ/153/2, (3.6)

and SFu and SFv are the super flatness factors [≡ 〈a6〉/〈a2〉3, a = u or v] of u and v
and δ = SFv/SFu. It is worth noting that whilst both β and δ are ' 1, αuv is, for most
flows, smaller than 1 and increasingly contributes to relations (3.2), (3.4) and (3.6) to
the power 1

2
n. This suggests that the large-scale quantity αuv could be a considerable

contributor to the IR scaling inequality (to be discussed in § 6.3).
We can simplify (3.3)–(3.6) by assuming that the p.d.f.s of u and v are Gaussian,

i.e. Fu = Fv = 3 and SFu = SFv = 15

〈(δu∗)4〉r∗→∞ = 4
5
R2
λ = 3〈(δu∗)2〉2r∗→∞, (3.7)

〈(δv∗)4〉r∗→∞ = 4
5
α2
uvR

2
λ = 3〈(δv∗)2〉2r∗→∞. (3.8)

Similarly, it is easy to show that

〈(δu∗)2
(δv∗)2〉r∗→∞ = 4〈(u∗2)(v∗2)〉 ' 4αuv〈u∗2〉2 ≡ 4

15
αuvR

2
λ , (3.9)

〈(δu∗)6〉r∗→∞ =
120

153/2
R3
λ = 15〈(δu∗)2〉3r∗→∞, (3.10)

〈(δv∗)6〉r∗→∞ =
120

153/2
α3
uvR

2
λ = 15〈(δv∗)2〉3r∗→∞. (3.11)

These alternative expressions for the limiting values of 〈(δu∗)4〉, 〈(δv∗)4〉, 〈(δu∗)6〉 and
〈(δv∗)6〉 may also have been obtained by assuming that, for large r∗, the p.d.f.s of δu∗
and δv∗ are Gaussian. Note that no such assumption is required for 〈(δu∗)2(δv∗)2〉r∗→∞.
Equations (3.7)–(3.11) show that the assumption of a Gaussian velocity results in
a Gaussian structure function. In practice, the p.d.f.s of u and v are slightly non-
Gaussian. In the outer region of wall-bound shear flows, Fu ' Fv > 3 in the outer layer
while all other data, i.e. centreline free-shear measurements, indicate that Fu ' Fv < 3
(not shown). The fact that velocity p.d.f.s are more non-Gaussian than velocity
increment p.d.f.s is not surprising. The velocity signal includes all structures at all
scales and differencing over large separations is akin to pre-whitening, i.e. a type
of smoothing or filtering. Alternatively, the assumption of a slightly non-Gaussian
velocity p.d.f. will still result in an approximately Gaussian increment p.d.f., i.e. it
would probably be too difficult to detect any non-Gaussianity experimentally. In
obtaining (3.1)–(3.11), it was assumed that 〈ε〉 = 〈ε〉iso. When αuv = 1, (3.1) and
(3.2) are identical, as are (3.7) and (3.8), and (3.10) and (3.11); this situation is
experimentally rare since global anisotropy exists in nearly every flow. The values of

〈u2〉1/2 and 〈v2〉1/2 shown in tables 1, 3 and 5 indicate that αuv is consistently smaller
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equation (3.9).

than 1. For the present turbulent grid flow (table 1), αuv is 0.67 while for the wake (table
1), plane jet (table 5) and circular jet (table 1), it is typically about 0.77. On the axis
of the pipe (table 3), αuv averages about 0.69. Recall that (3.3) and (3.4) are identical
if Fu = Fv and αuv = 1. It is important to note that αuv does enter (3.4) and (3.6)
directly and this will be discussed further in § 6. The data in figure 6 are in excellent
qualitative agreement with the Rnλ dependencies indicated by the above equations. In
particular, 〈(δu∗)2〉 is in close agreement with (3.1) while 〈(δv∗)2〉/αuv is also consistent
with (3.2) and reflects the inequality αuv < 1 for large separations. Equations (3.7) and
(3.10) also seem to be well satisfied by the measured values of 〈(δu∗)4〉 and 〈(δu∗)6〉
for r∗ � L∗. The limiting values of 〈(δv∗)4〉/α2

uv and 〈(δv∗)6〉/α3
uv again reflect the

contribution of the inequality αuv < 1. In conclusion, the assumption that both u and
v are Gaussian seems reasonable because the resulting assumption that δu and δv
are Gaussian when r is large is, experimentally, almost impossible to disprove. In the
former case, there is no distinction between contributions to the p.d.f. from different
scales whereas in the latter, only the contributions from the largest scales are included.

We next consider the Rλ dependence of the second- and fourth-order moments of
δu∗ and δv∗ in the limit r∗ → 0. It is easy to show, assuming isotropy, that (when
r∗ → 0)

r∗−4〈(δu∗)4〉 →
〈(

∂u∗

∂x∗

)4
〉

=
1

152
F∂u/∂x, (3.12)

and

r∗−4〈(δv∗)4〉 →
〈(

∂v∗

∂x∗

)4
〉

=
4

152
F∂v/∂x, (3.13)

where F∂u/∂x and F∂v/∂x, are the flatness factors of ∂u/∂x and ∂v/∂x, respectively.
The Rλ dependence of F∂u/∂x and F∂v/∂x is shown in figure 7; for completeness,

results for FM ≡ 〈(∂u∗/∂x∗)2
(∂v∗/∂x∗)2〉/〈(∂u∗/∂x∗)2〉/〈(∂v∗/∂x∗)2〉, inferred from the

limiting values of r∗−4〈(δu∗)2(δv∗)2〉, have been included. All three quantities appear to
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increase with Rλ at approximately the same rate (the power exponents being 0.26±0.07;
0.26 ± 0.08 and 0.25 ± 0.08, respectively), in particular, there is no indication of a
‘transitional’ behaviour at Rλ ' 700, as observed by Tabeling et al. (1996). Accordingly,
the ratios T ≡ 〈(∂v/∂x)4〉/〈(∂u/∂x)4〉 and M ≡ 〈(∂u/∂x)2(∂v/∂x)2〉/〈(∂u/∂x)4〉 are, to
an excellent approximation, independent of Rλ. This result consolidates the earlier
suggestion (Antonia et al. 1996), based on a limited Rλ range (Rλ . 200), that F∂v/∂x
increases with Rλ at a rate comparable to that for F∂u/∂x. The present averaged values
of T and M, assuming Rλ independence, are close to 5.52 and 0.84. The power
exponents for F∂u/∂x and F∂v/∂x are in excellent agreement with the model of Pullin &
Saffmann (1993; n = 0.25) based on the Lundgren–Townsend vortex model for small-
scale turbulence. This model predicts that all velocity derivative moments increase at
an equal rate. Indeed, Pullin & Saffmann also predict T = 6 independently of Rλ,
in good agreement with the current experimental results considering the difficulty in
acquiring fine-scale measurements.

We finally turn our attention to the Rλ dependence of 〈(δu∗)2〉, 〈(δv∗)2〉, 〈(δu∗)4〉 and
〈(δv∗)4〉 for a particular value of r. Specifically, we have chosen r = λ, a separation
which nominally falls within or near the beginning of the IR. Figure 8 indicates that
these four quantities continue to increase with Rλ, further corroborating the trend
of figure 7. As expected, 〈(δu∗)4〉 and 〈(δv∗)4〉 increase at a faster rate than 〈(δu∗)2〉
and 〈(δv∗)2〉. Their asymptotic rate of increase is larger than that predicted by either
the lognormal (Kolmogorov 1962) or β (Frisch, Sulem & Nelkin 1978) models. The
latter predictions can be obtained readily from the expression given in Antonia,
Satyaprakash & Chambers (1982), i.e.

〈(δu∗)n〉 ∼ Rn/6+µn/3
λ ,

where the exponent µn/3 depends quadratically on n for the lognormal model

µn/3 = 1
18
µn(n− 3), (3.14)
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and linearly for the β model

µn/3 = 1
3
µ(n− 3). (3.15)

The distributions of 〈(δu∗)n〉 (r = λ) which correspond to (3.13) and (3.14) for µ ' 0.25
(see § 6) are included in figure 8. The difference in the Rλ exponents is not significant
between the two models, but it is evident that the measured Rλ dependence is greater
than that given by either model and has yet to settle down to a simple power-
law. Whereas the LN model underestimates the rate of increase of 〈(δu∗)4〉 when
r = λ, it appears to overestimate it, albeit slightly, when r → 0. For µ = 0.25, the
analysis of Van Atta & Antonia (1980) yields 〈(∂u∗/∂x∗)4〉 ∼ R0.42

λ , compared with
the R0.25

λ dependence exhibited in figure 14. The comparison at r = λ should be more
appropriate than that at r → 0, since σ2 = A+ µ ln(L/r), where σ2 is the variance of
ln εr (Kolmogorov 1962), cannot be expected to be valid when r → 0.

4. Third-order moments of δu∗

In this section, we examine the Rλ dependence of 〈(δu∗)3〉 and 〈|δu∗|3〉. We consider
both absolute and non-absolute increments, mainly because 〈|δu∗|3〉 is used in § 6 to
estimate the scaling range exponents via the ESS method. As with the second-order
and fourth-order moments (§ 3), we focus on the Rλ dependence of scales in the three
different ranges. An overall effect of Rλ on 〈(δu∗)3〉 and 〈 |δu∗|3〉 can be gleaned from
figure 9. The overall relative trend between 〈(δu∗)3〉 and 〈|δu∗|3〉 is similar in the DR
and the IR. The notable difference occurs mainly for large separations (r & Lu) since
non-absolute odd moments should approach zero for sufficiently large separations.
In general, the scaling, for both 〈(δu∗)3〉 and 〈|δu∗|3〉, is nominally r∗3 in the DR
and r∗ for the IR. For 〈|δu∗|3〉 only, the integral scales behave as C(Rλ), where C is a
constant which depends on Rλ.

The cornerstone of inertial range theory is the Karman–Howarth–Kolmogorov
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(K–H–K) equation (as referred to by Frisch 1995)

〈(δu∗)3〉 − 6
∂〈(δu∗)2〉
∂r∗

= − 4
5
r∗. (4.1)

When r∗ lies in the IR, the second term on the left-hand side is negligible and

〈(δu∗)3〉 ' − 4
5
r∗. (4.2)

Evidence of such scaling has been, tentatively, shown for both forced (She et al. 1993;
Wang et al. 1996) and unforced direct numerical simulations (DNS) (Boratav & Pelz
1997) of isotropic box turbulence for relatively low Rλ, although the extent of the
linear range was tenuously small. The decaying turbulence simulation of Boratav
& Pelz (1997) indicates surprisingly good agreement with (4.2); the corresponding
experimental data (Zhou & Antonia 2000) show that, over the IR, the magnitude of
〈(δu∗)3〉 is smaller than 4

5
, the difference tending to become smaller as Rλ increases

(a similar observation is made by Qian (1999) who emphasizes the slow nature of
the decay of the finite-Reynolds-number effect). Extrapolation of the data suggests
that the difference may disappear for Rλ between 500 and 1000. For the present data,
the overall Rλ trend for IR scales is shown in figure 9. Although the extent of the
IR is expected to increase with Rλ, this tendency is not apparent in figure 9 either
for 〈(δu∗)3〉/r∗ or 〈|δu∗|3〉/r∗. There is no strong evidence of either a significant linear
region or a region where −〈(δu∗)3〉/r∗ is equal to 4

5
. Arguably, the atmospheric data

exhibit the most plausible linear region, although the constant is slightly below 4
5
. The

‘constant’ is plotted in figure 10 both for 〈(δu∗)3〉/r∗ and 〈|δu∗|3〉/r∗. The asymptotic
‘theoretical’ value for 〈|δu∗|3〉/r∗ is not known. It is evident that both quantities have
yet to reach an asymptotic value. In fact, 〈(δu∗)3〉/r∗ is tending to∼ 0.74 and 〈|δu∗|3〉/r∗
is approaching ∼ 7. Since 〈ε〉iso has been used for 〈ε〉, the actual value of 〈ε〉 is likely to

be larger than 〈ε〉iso but not smaller. The shortfall in −〈(δu∗)3〉/r∗ cannot therefore be
attributed to the unknown true value of 〈ε〉 – this would only decrease its magnitude.

Another way of examining the Rλ dependence in the IR is to evaluate (4.2) at
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1/2
λ (equation

(4.3)).

r = λ. It follows that

−〈(δu∗)3〉 ' 4
5
λ∗.

For isotropic turbulence, λ∗ = 151/4R
1/2
λ so that

−〈(δu∗)3〉 = 4
5
151/4R

1/2
λ = 1.574R

1/2
λ . (4.3)

This result is shown in figure 11, together with the experimental values of −〈(δu∗)3〉
at r = λ. The latter increase at a rate faster than R

1/2
λ at least up to Rλ ' 103. We have

included in this figure the earlier results of Antonia et al. (1982); the latter authors

concluded, on the basis of relatively few data, that the R
1/2
λ dependence was satisfied.
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A more reasonable conclusion is that (4.3) is likely to be satisfactory only when Rλ
exceeds about 103. This possibility is of course consistent with the observations made
in connection with figure 10 which indicates only an asymptotic approach to (4.2). The

skewness Sδu ≡ 〈(δu)3〉/〈(δu)2〉3/2 is also shown, for r = λ, in figure 11. Its magnitude
(' 0.23) is essentially independent of Rλ. The requirement for a constant of 4

5
remains

a somewhat controversial issue (Monin & Yaglom 1975; Lindborg 1996; Hill 1997).
The possibility that both the extent and magnitude of the IR is highly Rλ dependent
so that only incomplete similarity is possible while approaching the asymptote (e.g.
Barenblatt & Goldenfeld 1995) cannot be dismissed. The other possibility, alluded
to in Sreenivasan & Dhruva (1998), is the nature and magnitude of the large-scale,
low-wavenumber forcing. In this context, the forced DNS box turbulence results are
not so surprising. The unforced, decaying results of Boratav & Pelz (1997) are not so
convincing after all. In decaying grid turbulence, there is an additional term in (4.1)
(Danaila et al. 1999; Lindborg 1999). Danaila et al. (1999) showed, for decaying grid
turbulence, that the extra term is

〈U∗〉
r∗4

∫ r∗

0

y∗4
∂

∂x∗
〈(δu∗)2〉 dy∗. (4.4)

This term was shown to be responsible for the non-universal behaviour of the IR.
In particular, the measured values of this term accounted quite satisfactorily for
the shortfall in the IR ‘constant’ at least at moderate values of Rλ. Analogously, a
term similar to (4.4) satisfactorily accounts for the departure from 4

3
in Yaglom’s

equation; the experimental confirmation of this departure was the main focus of the
paper by Danaila et al. Term (4.4) essentially results from a global non-homogeneity
which arises from the lack of homogeneity of the scales of motion at which energy is
injected into the flows. For sufficiently large Rλ, order of magnitude arguments (e.g.
Lindborg 1996; Antonia et al. 1997b) suggest that this term should disappear. For
non-homogeneous turbulent shear flows, the majority of the flows considered in this
paper, the non-homogeneity and anisotropy of the large scales is likely to contribute
to the ‘shortfall’ by leaving its mark on the smaller scales. This influence, of course,
should reduce as Rλ increases. More work is needed before the combined effects of
Rλ and the mean shear on this shortfall can be quantified adequately. Progress in this
direction appears to be under way, e.g. the investigation of Garg & Warhaft (1998)
where the shear is kept constant but Rλ is varied.

Figure 6 displays the Rλ dependence of the limiting value of 〈|δu∗|3〉 as r∗ → ∞.
The trend is well predicted by assuming that the p.d.f. of |δu∗| is Gaussian; the
uncertainty in |δu∗| and Rλ cannot allow us to distinguish between the Gaussian
distribution and any other distribution that deviates only slightly from Gaussianity.
In § 3, it was demonstrated that the Rλ dependence of 〈|δu∗|n〉 and 〈|δv∗|n〉 for n = 4
and 6 can be considered to be Gaussian. For odd moments we must assume that
|δu∗| is Gaussian. The Gaussian result for the third-order moment is 〈|δu∗|3〉r∗→∞ =

1.60〈(δu∗)2〉3/2r∗→∞. Using this variance, the Rλ dependence for 〈|δu∗|3〉 as r∗ → ∞ is

' 0.59R
3/2
λ . This is indicated in figure 6 and the agreement with experimental data

is excellent. Similarly, the result for the limiting value of 〈|δv∗|3〉 as r∗ → ∞ can be

estimated as ' 0.59α
3/2
uv R

3/2
λ .

5. Second-order moments of pressure increments
Second-order moments of the pressure increment δp = p(x+r)−p(x), where p is the

kinematic pressure fluctuation, can be readily inferred from the measured distribution
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〈(δp∗)2〉 is calculated using JGA, equation (5.4). The data correspond to the X-wire data shown in
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of 〈(δu)2〉 provided the joint probability density function of the velocity fluctuations
at points x and x+ r is assumed to be Gaussian. This is essentially the JGA, as used
by several authors, e.g. Batchelor (1951) and Uberoi (1953), which allows quadruple
velocity correlations to be expressed in terms of combinations of double velocity
correlations, as originally proposed by Millionshchikov (1941).

An expression for the two-point pressure correlation P (r) = 〈p(x)p(x + r)〉 was
given by Batchelor (1951), see also Monin & Yaglom (1975; hereinafter referred to
as MY), using JGA

P (r) = 2〈u2〉2
∫ ∞
r

(
y − r2

y

)(
df

dy

)2

dy, (5.1)

where f is the correlation coefficient 〈u(x)u(x+ r)〉/〈u2〉. A reasonable approximation
for locally homogeneous flows is

DLL ≡ 〈(δu)2〉 = 2〈u2〉(1− f), (5.2)

and

〈(δp)2〉 = 2〈p2〉 − 2P (r). (5.3)

Equation (5.1) can be rewritten as

〈(δp)2〉 =

∫ ∞
0

yD′2LL(y) dy −
∫ ∞
r

(
y − r2

y

)
D2
LL(y) dy, (5.4)

where a prime denotes differentiation with respect to y. Equation (5.4) has been used
to calculate 〈(δp)2〉 after least-squares fitting log–log polynomials to the measured
distributions of 〈(δu)2〉 as a function of r. Convergence studies of (5.4) with respect
to the upper integration limit required it to be at least ∼ O(10Lu). The resulting
distributions of 〈(δp∗)2〉 are shown in figure 12.

At small r∗, the calculated distributions come together but do not collapse. At large
r∗, 〈(δp∗)2〉 approaches a constant value, whose magnitude increases with Rλ. This
constant is identifiable with 2〈p∗2〉, as can be inferred from (5.3) when r is sufficiently
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pressure coefficient, Cp ≡ 〈p2〉/〈u2〉2. •, Cp; - - -, Cp = 0.34 (Batchelor 1951).

large for P (r) to become negligible. The limiting value

lim
r∗→∞〈(δp

∗)2〉 = 2〈p∗2〉 (5.5)

increases in power-law fashion with respect to Rλ. It is of interest to compare this
value with previously reported values, based on either measurement or simulation, of
the mean-square pressure in different flows. Since the ratio 〈p2〉/〈u2〉2 ≡ Cp is usually
quoted, it is appropriate to relate 〈(δp∗)2〉 to this ratio. It was shown, in the context
of figure 13, that, for locally isotropic turbulence, 〈u∗2〉 = Rλ/151/2. It follows that

lim
r∗→∞〈(δp

∗)2〉 = 2
15
CpR

2
λ . (5.6)

Batchelor (1951) estimated Cp to be 0.34 for very large Reynolds numbers. Batchelor’s
calculation used the form of f(r) predicted by Heisenberg (1948). The corresponding
form of DLL(y) is

DLL(y) =
y2/15

(1 + 30−3/2y2)
2/3

. (5.7)

Batchelor noted that the accuracy of this estimate depends mainly on the accuracy
of f(r). He suggested that Cp = 0.34 should be insensitive to the Reynolds number,
arguing that, except near r = 0, f(r) should be reasonably constant over a wide
range of Reynolds number. The estimate of Cp should not be too affected by the
joint-Gaussianity assumption since only small scales, which ought to contribute little
to 〈p∗2〉, are likely to violate this assumption. There is adequate published evidence
(e.g. Schumann & Patterson 1978; MY; Kim & Antonia 1993; Hunt et al. 1994) to
support JGA at sufficiently large scales.

The dashed line shown in figure 13 corresponds to Cp = 0.34; it appears to be
in close agreement with the data, over an appreciable Rλ range. This agreement
is reasonable since we have verified that (5.7) represents an adequate fit to the
measurements at sufficiently large Rλ; we estimate that D∗LL(u)/r∗2/3 ∼ 2.2, not 2.0 as
predicted by (5.7). The values of Cp are shown in the inset of figure 13 on a linear
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scale; a value of about 0.42 seems more appropriate than 0.34. Significant variation
has been reported (Hunt et al. 1994) for either measured or numerical values of
Cp. Measurements in the mixing layer of a relatively high Reynolds number axi-
symmetric jet indicated a value of 0.42 (George, Beuther & Arndt 1984) while Hinze
(1975) reported a value of 0.5. There have been several direct numerical simulations
of periodic box turbulence (forced and unforced) with grid resolutions ranging from
323 to 5123 (She et al. 1993; Gotoh & Rogallo 1994). A value of about 1 was reported
by Schumann & Patterson (1978), Hunt et al. (1994) and Pumir (1994). Fung et al.
(1992) reported values of 0.4 to 0.5 whereas Gotoh & Rogallo (1994, 1999) reported
a value of 0.79 for 38 . Rλ . 172. Simulations of fully developed channel flow (Kim
1989) indicate a value of about 1.2 (Rλ ' 33, 56) at the centreline. It seems likely,
e.g. Gotoh & Nagaya (1999), that the use of the ratio 〈p2〉/〈q2〉2 instead of Cp would
reduce some of the previous discrepancies.

It is of interest to examine how the magnitude of the mean-square pressure gradient
〈(∂p/∂x)2〉 evolves with Rλ. The evaluation of this quantity has received a fair degree
of attention (e.g. Batchelor 1951; Oboukhov & Yaglom 1951; Uberoi 1953; Gotoh
& Rogallo 1994, 1999; Gotoh & Nagaya 1999; Vedula & Yeung 1999). Batchelor
pointed out that 〈(∂p/∂x)2〉 is important partly because of its significance in many
physical situations and partly because it can be inferred indirectly from observations
of the diffusion of marked fluid particles. By analogy to the velocity Taylor microscale
λ, Batchelor defined a pressure Taylor microscale

λ2
p =

〈u2〉2
〈(∂p/∂x)2〉 . (5.8)

The use of 〈u2〉2 instead of 〈p2〉 in the numerator seems justifiable in view of the
relative independence of Cp on Rλ (figure 13). Batchelor estimated 〈(∂p/∂xi)2〉 using
JGA, i.e. 〈(

∂p

∂xi

)2
〉

= 3ν−1/2〈ε〉3/2
∫ ∞

0

y−1[D′LL(y)]2 dy. (5.9)

After Kolmogorov-normalizing (5.9) and assuming local isotropy, i.e. 〈(∂p/∂xi)2〉 =
3〈(∂p/∂x)2〉, 〈(

∂p∗

∂x∗

)2
〉

=

∫ ∞
0

y∗−1
[D∗′LL(y∗)]2

dy∗. (5.10)

For the particular form for DLL(y) used by Batchelor, i.e. (5.7)〈(
∂p∗

∂x∗

)2
〉
' 1.3. (5.11)

The present JGA values (figure 14) increase up to Rλ ' 300 and are approximately
constant for Rλ & 300. The constant (' 1.1) is slightly smaller than that given by
(5.11) but nearly the same as that given by Heisenberg (1948). Note that the Rλ
increase of 〈(∂p∗/∂x∗)2〉 in figure 14 simply reflects the increase of D∗′LL with Rλ. The
asymptotic value of 〈(∂p∗/∂x∗)2〉 can be identified with the constant cp defined in MY,
namely,

〈(δp)2〉 = cp〈ε〉3/2ν−1/2r2, (5.12)

in the limit of small r. Values of cp obtained via JGA by several authors (e.g.
Yaglom 1949; Batchelor 1951) are discussed in MY (p. 409). Yaglom (1949) obtained
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Figure 14. Rλ dependence of the small-scale pressure coefficient, cp ≡ 〈(∂p∗/∂x∗)2〉. ∗, calculated
using JGA (equation (5.10)); •, calculated using HW (equation (5.16)), same X-wire data as used
for ∗; O, DNS results, taken from Antonia et al. (1998a); —, least-squares fit to DNS; — - —,
cp = 1.3 (Batchelor 1951); — —, cp ' 1.0 (Heisenberg 1948).

cp ' 0.4/|Sδu| where Sδu, the skewness of δu, was assumed to be constant in the
inertial range. This assumption seems adequate allowing for the scatter in the data
(e.g. MY). Figure 11 indicates that Sδu (r = λ) is approximately independent of Rλ.
The average value of Sδu (' 0.23) – this value was also obtained by Garg & Warhaft
(1998) in a constant shear flow – implies a value of cp ' 1.74, which is significantly
larger than the present JGA estimates.

It should be pointed out that the Rλ dependence of the ratio λp/λ, as found by

Batchelor and MY, is due simply to the Rλ dependence of 〈u∗2〉1/2 since

λp

λ
= 〈u∗2〉1/2 〈(∂u

∗/∂x∗)2〉1/2

〈(∂p∗/∂x∗)2〉1/2
.

For locally isotropic turbulence, 〈u∗2〉 = 15−1/2Rλ, equation (3.1), and 〈(∂u∗/∂x∗)2〉1/2 =
15−1/2. It follows that

λp

λ
= c−1/2

p 15−3/4R
1/2
λ , (5.13)

which is identical to the expression given by Batchelor when cp ' 1.3, namely,

λp

λ
' 0.11R

1/2
λ . (5.14)

Heisenberg (1948) had obtained a slightly larger value (0.13) for the coefficient, using
the spectrum instead of the structure function and assuming statistical independence
of Fourier components of the velocity field. Note that 0.13 corresponds to a value of
cp ' 1, which is in better agreement with our data (figure 15) than cp ' 1.3.

Unlike 〈p2〉, 〈(∂p/∂xi)2〉 should receive a significant contribution from small scales.
While JGA or Heisenberg’s independence hypothesis may be sufficiently accurate for
estimating 〈p2〉, it is unlikely to be adequate for calculating 〈(∂p/∂xi)2〉. The accuracy
of (5.10) and (5.14) must be questionable in spite of the reasonable support (Batchelor
1951; Uberoi 1953) from turbulent diffusion measurements (Rλ . 160) and from the
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Figure 15. Rλ dependence of the ratio of the pressure and velocity Taylor microscales (λp/λ).∗, calculated using JGA; •, calculated using HW, same X-wire data as used for ∗; �, DNS results,
taken from Antonia et al. (1998a); —, least-squares fit to DNS; — - —, equation (5.14) (Batchelor
1951).

small Rλ (. 35) isotropic turbulence simulations of Schumann & Patterson (1978).
The latter data, which confirm the theoretical result λp/λ = 0.707 (Rλ → 0), are
included in figure 15.

The previous comments suggest that it is therefore important to avoid JGA when
calculating 〈(δp∗)2〉 at small r∗ or evaluating 〈(∂p∗/∂x∗)2〉. There are two ways of doing
this. One is to obtain 〈(δp∗)2〉 from a direct numerical simulation. The other is to use
the relation derived by Hill & Wilczak (1995) which allows 〈(δp)2〉 to be calculated
from a knowledge of 〈(δu)4〉, 〈(δv)4〉 and 〈(δu)2(δv)2〉. Available DNS results for 〈(δp)2〉
in both homogeneous and non-homogeneous turbulent flows were recently collected
by Antonia et al. (1999). The range of Rλ extended from 36 to about 380. The results
clearly indicated that 〈(δp)∗2〉 increased significantly with Rλ at small r∗. The resulting
values of 〈(∂p∗/∂x∗)2〉, which are included in figure 14, are greater and increase
(∼ R0.9

λ ) at a faster rate than the present JGA values. Correspondingly, the DNS
values of λp/λ (figure 15) increase at a much slower rate than the JGA values. The
DNS values of 〈(δp∗)2〉 at r∗ → ∞ (not shown here) are of comparable magnitude and
increase (∼ Rλ) at nearly the same rate as the JGA data, thus supporting the earlier
claim that JGA appears to be a reliable assumption at sufficiently large values of r.

The relation of Hill & Wilczak (1995),

Dp(r) = − 1
3
DLLLL(r) + 4

3
r2

∫ ∞
r

y−3[DLLLL(y) + DNNNN(y)

−6DLLNN(y)] dy + 4
3

∫ r

0

y−1[DNNNN(y)− 3DLLNN(y)] dy, (5.15)

is based on the assumption of local homogeneity and local isotropy. In (5.15),
Dp(r) ≡ 〈(δp)2〉, DLLLL(r) ≡ 〈(δu)4〉, DLLNN(r) ≡ 〈(δu)2(δv)2〉 and DNNNN(r) ≡ 〈(δv)4〉,
the subscript N referring to a direction (y or z) transverse to the flow direction of
the mean flow. Distributions of 〈(δp)2〉 were calculated from (5.15) by Hill & Boratav
(1997) (also Boratav & Pelz 1996; Nelkin & Chen 1998) using DNS data for either
forced or unforced isotropic turbulence for Rλ ∼ 110–220. These distributions were
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found to be in good agreement with the DNS distributions of 〈(δp)2〉. In contrast,
distributions of Dp obtained from (5.15) by using the present measurements of 〈(δu)4〉,
〈(δv)4〉 and 〈(δu)2(δv)2〉 are well behaved only at small r before changing sign. This
change occurs when the positive contribution from 〈(δu)4〉 and 〈(δv)4〉 is cancelled by
the negative contribution from 〈(δu)2(δv)2〉. This cancellation, which underlines the
sensitivity of the calculation, based on (5.15), to the accuracy with which the three
fourth-order moments are estimated, was illustrated by Nelkin & Chen (1998) who
rewrote (5.15) to make more explicit the relative contributions from these moments. It
is unlikely that the cancellation is more critical for measured than numerical data; the
application of (5.15) to DNS data for decaying isotropic turbulence (Antonia et al.
1998a) resulted in a change of sign at quite small values of r∗. The possibility that the
change of sign, or cancellation effect, may be caused by a failure of the data to satisfy
the local homogeneity requirement of (5.15) cannot be dismissed; this suggestion
needs to be investigated further. Alternatively, the definitions of DLLNN and DNNNN
given in HW do not have to be restricted to those increments that are experimentally
convenient to measure, e.g. a single X-wire probe and Taylor’s hypothesis will result in
DLLNN(r) ≡ 〈(δu)2(δv)2〉 and DNNNN(r) ≡ 〈(δv)4〉. They are not the only L–N pairing
possible, yet, as will be shown in § 6, they are the most susceptible to anisotropy.

We limit ourselves here to considering only the behaviour of 〈(∂p/∂x)2〉, as inferred
from (5.15). The resulting relation for 〈(∂p/∂x)2〉 was given by Hill & Wilczak and is
reproduced below in Kolmogorov-normalized form〈(

∂p∗

∂x∗

)2
〉

= 4

∫ ∞
0

y∗−3
[D∗LLLL(y∗) + D∗NNNN(y∗)− 6D∗LLNN(y∗)] dy∗. (5.16)

At small Rλ, the resulting values of 〈(∂p∗/∂x∗)2〉 (figure 14) are comparable in
magnitude and rate of growth to the DNS values, thus further raising doubt on the
validity of JGA. At the largest Rλ, the values of 〈(∂p∗/∂x∗)2〉, calculated from (5.16),
become constant, as for the JGA values but in contrast to the increasing Rλ trend
of the DNS values of 〈(∂p∗/∂x∗)2〉. We would expect the latter values to be more
accurate than either of the former ones since it is consistent with the Rλ increase of
all fourth-order velocity derivative moments (figure 7).

6. Rλ dependence of IR scaling exponents
6.1. ESS scaling exponents

The scaling exponents of longitudinal increments,

δSL(≡ δui,j = ui[̃r + x̃0]j − ui[x̃0]j , i = j),

and transverse increments,

δST (≡ δui,j = ui[̃r + x̃0]j − ui[x̃0]j , i 6= j)

are discussed in this section (any lack of Kolmogorov normalization should not result
in loss of generality). Only for isotropic box DNS simulations of moderate Rλ(∼ 216)
have the scaling exponents for δSL [〈(δSL)n〉 ∼ rζL(n); e.g. Cao et al. 1996] and δST
[〈(δST )n〉 ∼ rζT (n); Chen et al. 1997] been, seemingly, directly measured against r.
The reason for this success – probably the existence of spatial homogeneity – has been
alluded to in § 4. Convincing scale invariance for nth-order moments of δu has yet
to be observed in experiments (e.g. Anselmet et al. 1984) and therefore we will only
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consider relative scaling exponents, estimated using a very general ESS (Benzi et al.
1993) formulation, namely,

〈|(δβi)a(δβj)b(δβk)c . . . (δβp)d|n/(a+b+c...+d)〉 ∼ 〈|(δβi)a(δβj)b(δβk)c . . . (δβp)d|〉ζ(n).
Here, the ith increment

δβi(̃r; x̃0, t0) ≡ βi(̃r + x̃0, t0)− βi(x̃0, t), (6.1)

can be any variable – e.g. any of the three velocity components or pressure – raised to
any order.

In the literature so far there have been several different techniques for measuring
δST and ζT (n). These depend on whether spatial or temporal increments are measured.
In this section, we present results for four relative scaling exponents. The first exponent
is the most common longitudinal nth-order scaling exponent ζL(n) (with u and r in
the direction of the mean velocity, i.e. δu = u(x + r) − u(x) being the more popular)
viz.

〈|(δSL)a|n/a〉 ∼ 〈|(δSL)3|〉ζL(n).

The first transverse exponent to be discussed, ζT ,1(n) (for the moment we do not
distinguish between transverse structure functions which contain transverse velocities
and those which include transverse separations; the subscript ‘1’ indicates the first of
three types for ζT (n) to be discussed in this section), is relative to δSL in the region
where 〈(δSL)3〉 satisfies (4.2) best, namely

〈|(δST )a|n/a〉 ∼ 〈|(δSL)3|〉ζT ,1(n).

Results include those of Antonia & Pearson (1997, 1998); Dhruva et al. (1997),
Antonia et al. (1998b), where δST ≡ v(x + r) − v(x) is achieved with a single-point
X-wire type measurement (i.e. temporal increments). A less common definition of
transverse scaling exponent is ζT ,2(n), namely

〈|(δST )a|n/a〉 ∼ 〈|(δST )3|〉ζT ,2(n),

which, while having less theoretical justification than ζT ,1(n), has been reported with
δST ≡ u(y + r) − u(y) (e.g. Herweijer & Van de Water 1995; Kahalerras et al.
1996; Noullez et al. 1997) or with δST ≡ v(x + r) − v(x) (e.g. Camussi et al. 1996).
Noullez et al. (1997) attained their optical measurements using the RELIEF method
in the transverse (mean-shear) direction of a circular-jet at moderate Rλ (∼ 810).
Kahalerras et al. (1996) measured δST with a pair of single hot-wire probes with
variable transverse separation in a circular jet and in the ONERA S1 wind-tunnel
(Rλ ∼ 2500). Herweijer & Van de Water (1995) measured δST with a rake of single
hot-wire probes separated in the transverse direction on a grid flow at moderate Rλ
(230–650) and a circular jet (Rλ ∼ 800). Lastly, a new type of transverse scaling
component is investigated, e.g. ζT ,3(n), namely,

〈|(δSL)a(δST )2a|n/3a〉 ∼ 〈|(δSL)a(δST )2a|〉ζT ,3(n)
.

For isotropic turbulence the moment 〈δSL(δST )2〉 should also scale like r (MY;
Lindborg 1996). In fact, it is the only third-order moment theory that directly relates
δST to δSL.

Figures 16–18 show the Rλ dependence of the four scaling exponents for n = 2,
4 and 6, respectively, using the ESS technique. The range used for cross-plotting is
centred about the region where 〈|δu∗|3〉/r∗ is a maximum. Overall, the Rλ dependence
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Figure 17. Rλ dependence of scaling exponents for 〈(δu)4〉, 〈(δv)4〉, 〈|δu(δv)2|4/3〉 and 〈(δp)2〉.◦, ζL(4); �, ζT ,1(4); ∗ ζT ,2(4); •, ζT ,3(4); O, ζp(2).

is most evident for the highest moment considered, although the following discussion
applies equally to n = 2 and n = 4. ζL does show a slight Rλ dependence and this
trend is upward increasing for n = 2 and downward decreasing for n = 4 and n = 6
since cross-plotting is relative to n = 3 and any trend must change sign as n crosses
3. If a convenient measure for intermittency µ [µ ≡ 2 − ζL(6)] derived from the
surrogate of ε, is applicable, then figure 18 shows that this relative intermittency
factor is increasing with Rλ. This result has been previously reported by Dhruva &
Sreenivasan (1998) although their empirical result, included in figure 18, is lower than
the present one. Indeed, the asymptotic value is nearly 0.3, which is in close agreement
with the observation of Praskovsky & Oncley (1997) for their high Rλ data.
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The result for ζT ,1(n) is very Rλ dependent and is consistent with previous obser-
vations (e.g. Antonia & Pearson 1997; Dhruva et al. 1997; Zhou & Antonia 2000)
that the high magnitude of the inequality ζT ,1(n)� ζL(n), at least for small to moder-

ate Rλ, is most probably due to anisotropy. Since 〈|(δv)a|n/a〉 is cross-plotted against
〈|(δu)3|〉 – a different variable – there is no change in sign for the Rλ dependence trend
from n < 3 to n > 3 as there is for ζL(n), ζT ,2(n) and ζT ,3(n). The existence of the
inequality is not too surprising because ζT ,1(n) is estimated from a cross-plot of two
different variables, δu and δv, with different integral lengthscales (Lu � 2Lv). As
αuv becomes smaller than 1, Lv falls below its isotropic value of 1

2
Lu. This reduc-

tion results in 〈|δv|n〉 becoming more quickly decorrelated than 〈|δu|n〉 – the result is
a continual reduction in the local slope as r decreases and an erosion of any IR.
However, this effect is reduced, as is the inequality ζT ,1(n) � ζL(n), as Rλ increases
and the overwhelming consequences are an increase in the extent of the IR and a
reduced influence of large-scale anisotropy as scales reduce in size. Some ‘groups’ of
ζT ,1(n) results shown in figures 16–18 are worth highlighting. The two high values,
marked ‘A’ at Rλ ∼ 205, are the results for the high-speed cylinder wake (i.e. u − v
and u − w centreline measurements). For these two runs, the ‘anisotropy’ ratio αuv
(≡ 〈v2〉/〈u2〉) is equal to 0.88 and 0.89, respectively. Conversely, the low group of seven
runs marked ‘B’ are the off-centreline measurements for the pipe investigation. Within
this group, αuv ranged from 0.36 to 0.69 and S∗ ranged from 0.06 to 0.077. Although
S∗ is below the negligible threshold recommended by Kim & Antonia (1993), the
increased anisotropy results in a dramatic increase in the inequality ζT ,1(n) � ζL(n).
The majority of the data (within areas marked C and D) appear to follow a plausible
Rλ dependence considering that αuv is approximately constant (0.71 6 αuv 6 0.77).
Although the scarcity of data for ζT ,1(n) and ζL(n) in the Rλ range 2000–10 000 is
regrettable, it is not implausible that the Rλ trend implies a steady reduction in the
inequality ζT ,1(n) � ζL(n), which is minimized at Rλ ∼ 10 000 as suggested by the
current atmospheric data.

Before discussing pressure exponents, we note that the Rλ dependence of ζT ,2(n) is
not unlike the results of Herweijer & Van de Water (1995), Camussi et al. (1996),
Kahalerras et al. (1996), Noullez et al. (1997). The values of ζT ,2(n), in our case, are
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obtained by cross-plotting against the same component, i.e. δST ≡ v(x + r) − v(x).
Again, a Rλ dependency is evident with a sign change between n < 3 and n > 3.
An inequality between ζT ,2(n) and ζL(n) exists, but it is smaller than that between
ζT ,1(n) and ζL(n). In fact, when also considering the uncertainty associated with the
relatively small sample-size for the higher Rλ runs, it is understandable why some
researchers have concluded that ζT ,2(n) ' ζL(n) regardless of whether δST is identified
with 〈|u(y + r)− u(y)|n〉 or 〈|v(x+ r)− v(x)|n〉, i.e. the cross-plotting of like-variables
emphasizes the self-similarity of the nth-moment relative to its third-moment because
their origin is the modulus of a common p.d.f. Any connection with turbulence theory
is tenuous. Yet, the method has an ‘in-built’ advantage of minimizing any effects from
the mean-shear or the anisotropy. There may be some utility in these exponents in
correcting for the effect of S∗ or αuv . This possibility appears to be emphasized by

the results for ζT ,3(n), namely, 〈|(δSL)a(δST )2a|n/3a〉 ∼ 〈|δSL(δST )2|〉ζT ,3(n). In fact, the
results appear to be a balance between ζL(n) and ζT ,2(n) – it is the only exponent that
does not show any Rλ dependence in figures 16–18.

Figure 17 contains the results for ζp(2), namely, 〈(δp)2〉 ∼ 〈|δu3
L|〉ζp(2), where 〈(δp)2〉

was obtained via JGA, as discussed in § 5. Unlike Boratav & Pelz (1996) and Cao,
Chen & Doolen (1999), we find a strong Rλ dependence and the plausible result that
ζp(2) asymptotes to a value not too dissimilar to ζT ,1(4) (which ultimately appears
to asymptote to ζL(4)) even though, at low Rλ, ζp(2) behaves like ζT ,1(2). Indeed, the
moderate Rλ (∼ 380) DNS data of Antonia et al. (1999) (though poorly resolved at
dissipative scales) also scales like ζL(2) but it is not implausible to assume that it
lies within the scatter for ζp(2) in figure 17. Also, the overall trend is in reasonable
agreement with the asymptotic result estimated by Nelkin & Chen (1998) from
the atmospheric data of Dhruva & Sreenivasan (1998) (i.e. ζp(2) ∼ 1.17) using the
formulation of Hill & Wilczak (1995). All of these results disagree with the assumption
that ζp(2) should immediately scale like [ζL(2)]2 i.e. ζp(2) ' 1.4, but, on the basis of
the present JGA results, the IR behaviour of 〈(δp)2〉 is considerably more intermittent
than 〈(δu)4〉 and not entirely unlike 〈(δv)4〉.

6.2. Direct local scaling exponents

Having considered relative scaling exponents estimated using the ESS technique in
§ 6.1, it is instructive to consider direct estimates of the local scaling exponents ζα(n).
The direct local scaling exponents ζα(n) are here estimated assuming 〈(δα∗)n〉 ∼ r∗ζα(n,r∗)
(α = u or v), namely

ζα(n, r
∗) = d log[〈(δα∗)n〉]/d log[r∗]. (6.2)

For the following discussion, the r∗ dependence is implied and r∗ will be dropped from
the notation for ζα(n). By way of an example, figure 19 shows ζα(n = 4) estimated
by (6.2) for the Reynolds number range 330 . Rλ . 1175. The majority of data
shown are plane jet data. A few comments can be made on the general behaviour
of ζu(4) and ζv(4). In the DR, r∗ < 10, ζα(4) is rapidly approaching the viscous
requirement of 4 as r∗ approaches zero. As r∗ increases through the intermediate
dissipative range (IDR), considered here to be the interval 10 . r∗ . 40, the local
values of ζα(4) roll off quickly. For both ranges, i.e. the DR and the IDR, there is
reasonable collapse for ζu(4) and ζv(4) – given the difficulty and associated uncertainty
in correctly estimating 〈ε〉. As r∗ approaches the IR, there is a considerable reduction
in the roll-off rate for both ζu(4) and ζv(4) and the notion of a plateau becomes
more plausible – only at high Rλ. After the IR, the roll-off rate for both ζu(4) and
ζv(4) then begins to increase again rapidly as r∗ approaches L∗α before eventually
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disappearing for r∗ � L∗α (§ 3). Returning to the region which is assumed to be the
IR (§ 4), it is clear that the magnitudes of ζu(4) and ζv(4) increase with Rλ. For the
highest Rλ data, there is evidence of a plateau, especially for ζv(4). An average over
the intervals 100 . r∗ . 170 and 70 . r∗ . 140, for ζu(4) and ζv(4), respectively,
gives ζu(4) ≈ 1.42 and ζv(4) ≈ 1.35. The ratio of these two values is equivalent to
that between ζL(4) and ζT ,1(4) shown in figure 17. A comment is required on the
magnitude of ζu(4) and ζv(4) calculated using (6.2). Figure 17 shows that both ζL(4)
and ζT ,1(4), estimated using the ESS technique, are lower than the K41 prediction of
4
3

and this is commonly thought to be the signature of small-scale intermittency since
all similarity hypotheses predict a negative scaling anomaly for n > 3. However, the
direct local scaling exponents ζu(4) and ζv(4) are both greater than 4

3
for the highest

Rλ plane jet data. We suggest that these higher values reflect the contribution of
large-scale anisotropy more than small-scale intermittency. We also note that figures
16–18 indicate that ζL(n) is approximately independent of Rλ, whereas figure 19 shows
that ζu(4) continually evolves with Rλ. Such a contradictory result may be construed
as an argument against the utility of the ESS technique.

Finally, we will consider direct local scaling exponents ζu(4) and ζv(4) for the
highest Rλ data available to us – the ITCE ASL data (table 1) with Rλ ≈ 4250. It
is worth recalling that this data is very well resolved in terms of probe resolution
(l∗ ≈ 2). Figure 20 shows local values of ζu(4) and ζv(4) calculated by (6.2). The local
behaviour of ζu(4) and ζv(4), for the ASL, is similar to that described above for the
plane jet data with two notable exceptions. First, the roll-off rate for ζv(4) in the IDR
is quicker than that for ζu(4). Secondly, the local values of ζu(4) and ζv(4), within what
is assumed to be the IR, are approximately equal with ζu(4) ' ζv(4) ≈ 1.37. These
values are based on an average of ζu(4) and ζv(4) over the interval 70 . r∗ . 140.
The corresponding ESS scaling exponents, ζL(4) and ζT ,1(4), for the ASL data, shown
in figure 17, suggest that there is still approximately 5% disagreement between ζL(4)
and ζT ,1(4). Perhaps this result too can be considered as further evidence questioning
the utility of ESS.

A few comments should be made on the actual magnitudes of ζu(4) and ζv(4) for
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Figure 20. Rλ dependence of the direct local scaling exponents ζα(4, r
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the highest Rλ plane jet results compared to the results for the ASL data. There
is no reason to expect the actual magnitudes of ζu(4) and ζv(4) (here we ignore
any scaling inequality) from different flows to be equivalent. Indeed, recent theories
have been proposed to suggest that large-scale anisotropy, which varies from flow to
flow and which is likely to depend on initial/boundary conditions for a particular
flow, is a major factor influencing the anomalous contribution to scaling exponents.
Preliminary investigations (e.g. Arad et al. 1998) have had some success in extracting
the anisotropic contribution to the IR scaling. Finally, the approximate equality
ζu(4) ' ζv(4) suggested by the ASL data further corroborates the conclusion reached
from our ESS investigation in § 6.1, namely, when Rλ is large enough to ensure
a sufficient separation between energetic and dissipative scales, equality between
longitudinal and transverse scaling exponents may be expected. However, the current
experimental evidence supports the notion that the magnitude of the IR scaling
exponents can be influenced by the degree of large-scale anisotropy.

6.3. Evidence for the effect of anisotropy on scaling exponents

In this section, a possible difference between longitudinal and transverse scaling
is studied directly by another technique which considers a direct relation between
〈(δu∗)n〉 and 〈(δv∗)n〉. We define the relative local scaling exponent, namely,

ψuv(n, r
∗) = d log〈[δv∗(r∗)]n〉/d log〈[δu∗(r∗)]n〉. (6.3)

Equation (6.3) resembles the definition of the ESS scaling exponent, (6.1), but now
both moments are of order n. If the two structure functions 〈(δv∗)n〉 and 〈(δu∗)n〉
scale in a similar manner over the same region of r∗, then ψuv(n, r

∗) = 1. Although
(6.3) cannot give any information about the actual value of the individual scalings
ζv(n) and ζu(n), it can resolve the issue of the inequality between the transverse ζv(n)
and longitudinal ζu(n). Figure 21 shows the local relative scaling between 〈(δu∗)2〉
and 〈(δv∗)2〉 for the axisymmetric jet, plane jet and atmospheric surface layer data.
The greatest departure from 1 of ψuv(2, r

∗) occurs in the region r∗ ≈ 10− 100 where
the DR scales cross over into the IR scales. It is probable that this region reflects
the small-scale anisotropy between 〈(δu∗)2〉 and 〈(δv∗)2〉. For very small separations
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r∗ . 5, all velocity fields are smooth and 〈(δu∗)2〉 and 〈(δv∗)2〉 scale in similar manner.
Thereafter, the inequality of scaling develops a maximum at approximately the Taylor
microscale λ∗a. Also, figure 21 shows that the maximum value of ψuv(2, r

∗), ignoring
the very small separations, occurs in a region beginning at r∗ ≈ 150, and then
quickly decays for large-scale separations. Note that the maximum value of ψuv(2, r

∗)
is similar to the ratio ζT ,1(2)/ζL(2) estimated from each of the respective data shown
in figure 16. Overall, the behaviour for ψuv(2, r

∗) indicates that both small-scale and
large-scale anisotropy inhibits equality of scaling between 〈(δu∗)n〉 and 〈(δv∗)n〉. Such
a behaviour may be construed as evidence of a lack of separation between the energy
and dissipative scales for the current experiments. Although not demonstrated here,
the above discussion equally applies to other values of n. It is possible that there is an
interesting connection between the local relative scalings ψuv(n, r

∗), relation (6.3), and
the velocity variance ratio αuv . We have found that ψuv(2, r

∗) has yet to reach 1.0 in the
IR, but the atmospheric data suggests that the possibility of ψuv(n, r

∗) becoming unity
in the limit of infinite Rλ cannot be ruled out. The possibility of scaling equality, as
Rλ increases, agrees with the conclusions reached for figures 16–18. This leads to the
following question: what happens when the transverse increment is composed of the
same velocity component as the longitudinal increment? If the transverse direction is
chosen to be a homogeneous direction, e.g. the z-direction in the current work, αuu is
automatically 1.0 and any influence of large-scale velocity anisotropy is removed from
the question of scaling inequality for 〈(δu∗L)n〉 and 〈(δu∗T )n〉. Such a possibility has been
demonstrated in recent experiments in the same plane jet facility (Antonia, Pearson
& Zhou 2001) which indicated that the scaling inequality between longitudinal and
transverse structure functions is reduced considerably.

Finally, we consider the effect of anisotropy at one value of r, namely r∗ = λ∗; the
following discussion relates to figures 8 and 10 which show the Rλ dependence of
the ratios 〈(δv∗)2〉/〈(δu∗)2〉 and 〈(δv∗)4〉/〈(δu∗)4〉 and 〈δu∗(δv∗)2〉/〈(δu∗)3〉 at r∗ = λ∗,
respectively. We have fit and ensemble-averaged two simple power laws to the data
using third- and fourth-order log–log polynomials (not shown) and the resulting ratios
〈(δv∗)2〉/〈(δu∗)2〉, 〈(δv∗)4〉/〈(δu∗)4〉 in figure 8 and 〈δu∗(δv∗)2〉/〈(δu∗)3〉 in figure 10 are
shown as solid lines. The isotropic relationship between 〈(δSL)2〉 and 〈(δST )2〉 is
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well known:

〈(δST )2〉 = [1 + (r∗/2)d/dr∗]〈(δSL)2〉. (6.4)

In the IR, if it is assumed (we ignore any form of intermittency) that 〈(δSL)2〉 ∼
C11r

∗ζL(2) and 〈(δST )2〉 ∼ C11r
∗ζL(2)(1+ζL(2)/2) then 〈(δST )2〉/〈(δSL)2〉 ∼ 1+ζL(2)/2. For

ζL ∼ 2
3
, the well-known IR isotropic result 〈(δST )2〉/〈(δSL)2〉 = 4

3
follows and it is easily

shown that slightly different intermittencies for ζL and ζT will not drastically change
the magnitude of this ratio. Figure 8 shows that 〈(δv∗)2〉/〈(δu∗)2〉 [≡ 〈(δST )2〉/〈(δSL)2〉]
asymptotes to ∼ 1.44, a value 8.3% greater than 4

3
. The theoretical IR result for

〈δSL(δST )2〉/〈(δSL)3〉, assuming 〈(δSL)3〉 ∼ ( 4
5
)r∗ and 〈δSL(δST )2〉 ∼ ( 4

15
)r∗ is 1

3
. Fig-

ure 10 shows that 〈δSL(δST )2〉/〈(δSL)3〉 asymptotes to a value greater than 1
3

(∼ 0.36).
There is no equivalent rigorous theoretical result for 〈(δST )4〉 as a function of 〈(δSL)4〉.
An empirical relation for fourth-order moments, based on analogies between rigorous
second- and third-order theory, has been developed by Ould-Rouis et al. (1996). Since
no alternative is yet available, we use their relation for 〈(δST )4〉, namely

〈(δST )4〉 = [1 + (9r∗/16)d/dr∗ + (r∗2/16)d2/dr∗2]〈(δSL)4〉. (6.5)

If 〈(δSL)4〉 ∼ C14r
∗ζL(4) and 〈(δST )4〉 ∼ C14r

∗ζL(4)(1 + [ζL(4)]/2 + [ζL(4)]2/16) then
in the IR, the ratio 〈(δv∗)4〉/〈(δu∗)4〉 ∼ (1 + [ζL(4)]/2 + [ζL(4)]2/16) is equal to 16

9

if ζL(4) is 4
3
. Figure 8 shows that (δv∗)4〉/〈(δu∗)4〉 is about 2.3. As expected, the

second-order ratio 〈(δv∗)2〉/〈(δu∗)2〉 asymptotes more quickly than the fourth-order
ratio 〈(δv∗)4〉/〈(δu∗)4〉. For both these ratios, it would be of interest to calculate the
equivalent results for δST ≡ u(y + r)− u(y). This test would be a useful indicator of
the role of global anisotropy, since it is eliminated from relations (6.3) and (6.4).

7. Conclusions
Low-order moments of longitudinal and transverse velocity increments were ob-

tained in many types of turbulent flow, with and without shear and for a relatively
wide range of Rλ (40–4250). Some of the data (plane jet, pipe) are new; others have
been taken either from the literature, or reduced from earlier measurements in our
laboratory. Second-order moments of pressure increments were calculated from the
second-order moments of the longitudinal velocity increments with the use of the
joint-Gaussian approximation. Each data set was treated in a consistent manner; in
particular, attention was paid to the number of independent samples, the extrapola-
tion of the data to Kolmogorov scales and the inclusion of a sufficient number of
points to permit the evaluation of power-law exponents in the scaling range.

Several conclusions can be drawn from the Reynolds number behaviour of the
increment moments with respect to separations in the dissipative range (DR), the
inertial range (IR) and in excess of the integral length scale.

Although the decision to estimate 〈ε〉 from the isotropic relation 〈ε〉 = 15ν〈(∂u/∂x)2〉
forces the collapse of 〈(δu∗)2〉 at small r∗, 〈(δu∗)2〉 increases with Rλ in the outer part
of the DR and throughout the IR. There does appear to be an asymptotic approach
to a universal distribution, in the spirit of K41. There is no indication, however,
that intermittency disappears, the value of ζL(2) remaining close to 0.70 instead of 2

3
,

almost independently of Rλ. The concept of a universal ‘Kolmogorov constant’ should
be tenable if the constant is defined on this basis.

For 〈(δu∗)2〉, the evolution to an asymptotic state is much faster than for 〈(δv∗)2〉.
This mostly reflects the ever-decreasing effect of anisotropy in the IR. ζT ,1(2), while
always lagging behind ζL(2), approaches the value of ζL(2) only for values of Rλ
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exceeding about 104. The results for ζT ,3(2), and to a lesser extent ζT ,2(2) are much
closer to ζL(2) than ζT ,1(2) since the effect of global anisotropy is removed in the
ESS technique. The slight difference between ζL(2) and ζT ,2(2) or ζT ,3(2) reflects the
skewness of δu(r) in the IR.

Both 〈(δu∗)4〉 and 〈(δv∗)4〉, as expected for higher-order moments, exhibit a much
stronger Rλ dependence than 〈(δu∗)2〉 or 〈(δv∗)2〉. In particular, in the limit of small
r∗, the magnitudes of 〈(∂u∗/∂x∗)4〉 and 〈(∂v∗/∂x∗)4〉 continue to increase with Rλ and
do not show the ‘transitional’ behaviour, around Rλ ' 700, reported by Tabeling et al.
(1996). The three quantities F∂u/∂x, F∂v/∂x and FM increase with Rλ at approximately
the same rate (∼ R0.26

λ ) and are consistent with the isotropic prediction of Pullin &
Saffmann (1993; ∼ R0.25

λ ). Also, the ratio of 〈(∂v/∂x)4〉/〈(∂u/∂x)4〉 (∼ 5.52) is close to
their prediction (∼ 6).

The behaviour of the exponent ζL(6) indicates that, within the framework of RSH,
the intermittency parameter ‘µ’ increases slightly with Rλ, in qualitative agreement
with the trend reported by Sreenivasan & Dhruva (1998). In particular, the asymptotic
value is nearly 0.3, which is in close agreement with the observation of Praskovsky &
Oncley (1997) for their high Rλ data.

Caution is needed in interpreting results for scaling exponents inferred from the
ESS method. In particular, the magnitude of scaling exponents which are evaluated
directly from the structure functions (e.g. figure 19 when n = 4) depends both on r∗
and on Rλ over a range which would normally be identified with the IR when ESS is
used. The behaviour of directly estimated scaling exponents suggests that the concept
of an IR, as proposed in K41, may be approached only asymptotically at very large Rλ.

In the limit r∗ → ∞, the power-law exponents of Rλ which describe the rates of
increase of the low-order moments of δu∗ and δv∗ appear to be consistent with the
assumed isotropic value of 〈ε〉. Departures from global isotropy and Gaussianity
need to be taken into account when determining the coefficients in the power-law
expressions, cf. (3.1)–(3.6).

The validity of the JGA-based calculation of 〈(δp∗)2〉 improves as r∗ increases. In
the limit r∗ → ∞, the calculated rate of increase of 〈(δp∗)2〉 or equivalently 〈p∗2〉, is
in agreement with Batchelor (1951). The magnitude of 〈(∂p∗/∂x∗)2〉, calculated using
JGA, increases slowly with Rλ and asymptotes to the value estimated by Heisenberg
(1948). This variation is, however, unlikely to be correct. DNS results for 〈(∂p∗/∂x∗)2〉
indicate a much larger rate of increase, more commensurate with that observed for
〈(∂u∗/∂x∗)4〉 and 〈(∂v∗/∂x∗)4〉, but are restricted to only relatively small Rλ.

The IR scaling exponents of 〈(δp)2〉, relative to 〈|(δu)3|〉, have a significant Rλ
dependence. Although 〈(δp)2〉 has been calculated using JGA we would not expect
the real Rλ dependence of 〈(δp)2〉 to be too dissimilar, although the relative exponents
may differ slightly. The exponent ζp(2) behaves very much like ζT ,1(4) and appears
to asymptote to ζL(4), in agreement with the value of ζp(2) calculated by Nelkin &
Chen (1998) for the atmospheric data of Dhruva et al. (1997), using the formula of
Hill & Wilczak (1995).

That there is, for a given Rλ, a whole range of possible values for ζL(n) and ζT (n) is
not implausible. For most turbulent flows, local isotropy is the exception rather than
the rule, global anisotropy appearing to affect all scales, down to the smallest DR
scales in some diminishing degree. It has been shown that an increase in Rλ, for a
given flow-type, with αuv , a measure of the global anisotropy, approximately constant,
results in a dilation of the IR and improvement in the equality between ζT (n) and
ζL(n). Correspondingly, it has also been shown, albeit analogously, that it is naive to
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believe that, for anisotropic flows, all measurements of ζT (n), whether by different
techniques or definitions, should result in the same value. It is only the increase in Rλ,
and the corresponding increase in the separation between λ and L, that appears to
rectify this anomaly. Perhaps only a full three-dimensional average of an anisotropic
flow would result in a true average value for ζT (n). A scenario of this type could only
be expected to be verified computationally.

The support of the Australian Research Council is gratefully acknowledged. R. A. A.
is grateful to Dr J. Qian for several helpful comments.
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